
OpenDaylight User Guide

 ()

OpenDaylight User Guide

ii

OpenDaylight User Guide

OpenDaylight User Guide

iii

Table of Contents
I. Getting Started with Opendaylight .. 1

1. OpenDaylight Controller Overview .. 2
2. Using the OpenDaylight User Interface (DLUX) .. 3

Getting Started with DLUX ... 3
Logging In .. 4
Working with DLUX .. 4
Viewing Network Statistics .. 5
Viewing Network Topology ... 5
Interacting with the Open Daylight Controller (ODL) 6

3. Running XSQL Console Commands and Queries ... 12
XSQL Overview .. 12
Installing XSQL .. 12
XSQL Console Commands .. 12
XSQL Queries .. 13

4. Setting Up Clustering on an OpenDaylight Controller ... 15
Clustering Overview .. 15
Single Node Clustering .. 15
Multiple Node Clustering ... 16

II. Addons ... 22
5. BGP LS PCEP .. 23

BGP LS .. 23
PCEP .. 26

6. Defense4All ... 30
Defense4All Overview ... 30
Defense4All User Interface .. 31

7. Group-Based Policy .. 36
Architecture and Model .. 36
Tutorial ... 36
Contact Information .. 46

8. L2Switch .. 47
Running the L2Switch project .. 47
Create a network using mininet .. 47
Generating network traffic using mininet .. 48
Checking Address Observations ... 48
Checking Hosts .. 48
Checking STP status of each link .. 49
Miscellaneous mininet commands .. 50
Components of the L2Switch ... 50
Configuration of L2Switch Components ... 51

9. ODL-SDNi .. 56
10. Packet Cable MultiMedia (PCMM) Service .. 57

Overview ... 57
Architecture .. 58
Features .. 59
Support ... 59

11. Plugin for OpenContrail ... 60
12. TCP-MD5 ... 61
13. VTN ... 62

OpenDaylight User Guide

iv

VTN Overview ... 62
VTN Installation Guide .. 70
How to set up OpenStack for the integration with VTN Manager 72
VTN Usage Examples ... 93

OpenDaylight User Guide

v

List of Figures
2.1. DLUX Modules ... 4
2.2. Topology Module ... 6
2.3. Yang UI .. 7
2.4. Yang API Specification .. 8
2.5. Yang UI API Specification ... 9
2.6. DLUX Yang Topology ... 10
2.7. DLUX List Warnings .. 11
2.8. DLUX List Button1 .. 11
6.1. Defense4All Overview ... 30
8.1. Address Observations ... 48
8.2. Hosts .. 49
8.3. STP status ... 50
10.1. Architecture Overview .. 58
13.1. VTN Overview .. 63
13.2. VTN Construction ... 64
13.3. VTN Mapping ... 65
13.4. VTN FlowFilter .. 68
13.5. VTN API ... 69
13.6. LAB Setup .. 73
13.7. Horizon GUI ... 78
13.8. Hypervisors ... 79
13.9. Create Network .. 80
13.10. Step 1 ... 81
13.11. Step 2 ... 82
13.12. Step 3 ... 83
13.13. Instance Creation .. 84
13.14. Launch Instance .. 85
13.15. Launch Network ... 86
13.16. Load All Instances ... 87
13.17. Instance Console ... 88
13.18. Ping .. 89
13.19. EXAMPLE DEMONSTRATING SINGLE CONTROLLER ... 93
13.20. EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS 95
13.21. Example that demonstrates vlanmap testing in Mininet Environment 97
13.22. EXAMPLE DEMONSTRATING VTN STATIONS ... 99
13.23. Flow Filter ... 103
13.24. PathMap ... 106

OpenDaylight User Guide

vi

List of Tables
3.1. Supported XSQL Console Commands .. 12
3.2. Supported XSQL Query Criteria Operators .. 13

Part I. Getting Started with Opendaylight
This first part of the user guide covers the basic user operations of the OpenDaylight Release using the
generic base functionality.

OpenDaylight User Guide

2

1. OpenDaylight Controller Overview
The OpenDaylight controller is JVM software and can be run from any operating system
and hardware as long as it supports Java. The controller is an implementation of the
Software Defined Network (SDN) concept and makes use of the following tools:

• Maven: OpenDaylight uses Maven for easier build automation. Maven uses pom.xml
(Project Object Model) to script the dependencies between bundle and also to describe
what bundles to load and start.

• OSGi: This framework is the back-end of OpenDaylight as it allows dynamically
loading bundles and packages JAR files, and binding bundles together for exchanging
information.

• JAVA interfaces: Java interfaces are used for event listening, specifications, and forming
patterns. This is the main way in which specific bundles implement call-back functions for
events and also to indicate awareness of specific state.

• REST APIs: These are northbound APIs such as topology manager, host tracker, flow
programmer, static routing, and so on.

The controller exposes open northbound APIs which are used by applications. The OSGi
framework and bidirectional REST are supported for the northbound APIs. The OSGi
framework is used for applications that run in the same address space as the controller
while the REST (web-based) API is used for applications that do not run in the same address
space (or even the same system) as the controller. The business logic and algorithms reside
in the applications. These applications use the controller to gather network intelligence, run
its algorithm to do analytics, and then orchestrate the new rules throughout the network.
On the southbound, multiple protocols are supported as plugins, e.g. OpenFlow 1.0,
OpenFlow 1.3, BGP-LS, and so on. The OpenDaylight controller starts with an OpenFlow 1.0
southbound plugin. Other OpenDaylight contributors begin adding to the controller code.
These modules are linked dynamically into a Service Abstraction Layer (SAL).

The SAL exposes services to which the modules north of it are written. The SAL figures
out how to fulfill the requested service irrespective of the underlying protocol used
between the controller and the network devices. This provides investment protection to
the applications as OpenFlow and other protocols evolve over time. For the controller
to control devices in its domain, it needs to know about the devices, their capabilities,
reachability, and so on. This information is stored and managed by the Topology Manager.
The other components like ARP handler, Host Tracker, Device Manager, and Switch
Manager help in generating the topology database for the Topology Manager.

For a more detailed overview of the OpenDaylight controller, see the OpenDaylight
Developer Guide.

OpenDaylight User Guide

3

2. Using the OpenDaylight User Interface
(DLUX)

Table of Contents
Getting Started with DLUX ... 3
Logging In .. 4
Working with DLUX .. 4
Viewing Network Statistics .. 5
Viewing Network Topology ... 5
Interacting with the Open Daylight Controller (ODL) ... 6

This section introduces you to the OpenDaylight User Experience (DLUX) application. DLUX
is an openflow network management application for Opendaylight controller. For detailed
information about Opendaylight overview and architecture, see Opendaylight Overview,
Opendaylight Architecture.

OpendaylightController has two interfaces namely:

• AD-SAL

• MD-SAL

Controller receives information from the various interdependent modules through the SAL
services. For more information about the SAL services available, see SAL Services. DLUX also
uses the SAL services to obtain network related information and use it to provide network
management capabilities.

Getting Started with DLUX
You can either use DLUX as a stand-alone plug-in or integrate with the Opendaylight
controller.

To install DLUX as a standalone application see OpenDaylight DLUX:Setup and Run.

To integrate with Opendaylight Controller you must enable DLUX Karaf feature. You can
enable adsal, md sal and various other bundles within Karaf depending on the features you
would like to access using DLUX. Each feature can be enabled or disabled separately.

Important

Ensure that you have created a topology and enabled MD-SAL feature in the
Karaf distribution before you use DLUX for network management.

For more information about enabling the Karaf features for DLUX, see OpenDaylight
DLUX:DLUX Karaf Feature.

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Overview
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework
https://wiki.opendaylight.org/view/File:ODL-Helium-dependency.png
https://wiki.opendaylight.org/view/OpenDaylight_Controller:SAL
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:Setup_and_Run
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_Feature
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_Feature

OpenDaylight User Guide

4

Logging In
To log in to DLUX, after installing the application:

1. Open a browser and enter the login URL. If you have installed DLUX as a stand-
alone, then the login URL is http://localhost:9000/DLUX/index.html. However if you
have deployed DLUX with Karaf, then the login URL is http://\<your IP\>:8181/dlux/
index.html. NOTE: Ensure that you use the port applicable for the DLUX installation
type. local host is the IP address of the machine where the application us installed.

2. Login to the application with user ID and password credentials as admin. NOTE: admin is
the only user type available for DLUX in this release.

Working with DLUX
After you login to DLUX, you will see all the modules that are available for DLUX in the
left pane. However the modules disappear if the features are not enabled in the Karaf
distribution.

To get a complete DLUX feature list, install restconf, odl l2 switch, and switch while you
start the DLUX distribution. For more information about enabling features on DLUX, see
OpenDaylight DLUX:DLUX Karaf Feature.

Figure 2.1. DLUX Modules

Modules that use the MD SAL based apis are :

• Nodes

• Yang UI

• Topology

http://localhost:9000/DLUX/index.html
http://<your
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_Feature

OpenDaylight User Guide

5

Modules that use the AD SAL based apis are:

• Connection manager

• Container

• Network

• Flows

Note

DLUX enables only those modules, whose APIs are responding. If you enable
just the MD-SAL in beginning and then start dlux, only MD-SAL related tabs will
be visible. While using the GUI if you enable AD-SAL karaf features, those tabs
will appear automatically.

To view features that are enabled:

1. Right click on the DLUX page.

2. Select Inspect Element and then click Network. A table that contains the list of features
and if they are available in the DLUX distribution. The features that are not enabled is
highlighted with red font and has status 404 Not Found.

Viewing Network Statistics
The Nodes module on the left pane enables you to view the network statistics and port
information for the switches in the network.

To use the Nodes module:

1. Select Nodes on the left pane. The right pane displays atable that lists all the nodes,
node connectors and the statistics.

2. Enter a node ID in the Search Nodes tab to search by node connectors.

3. Click on the Node Connector number to view details such as port ID, port name, number
of ports per switch, MAC Address, and so on.

4. Click Flows in the Statistics column to view Flow Table Statistics for the particular node
like table ID, packet match, active flows and so on.

5. Click Node Connectors to view Node Connector Statistics for the particular node ID.

Viewing Network Topology
The Topology tab displays a graphical representation of network topology created.

OpenDaylight User Guide

6

Note

DLUX UI does not provide ability to add topology information. The Topology
should be created using an open flow plugin. Controller stores this information
in the database and displays on the DLUX page, when the you connect to the
controller using openflow.

To view network topology:

1. Select Topology on the left pane. You will view the graphical representation on the right
pane. In the diagram blue boxes represent the switches, the black represents the hosts
available, and lines represents how switches are connected.

2. Hover your mouse on hosts,links, or switches to view source and destination ports.

3. Zoom in and zoom out using mouse scroll to verify topology for huge topologies.

Figure 2.2. Topology Module

Interacting with the Open Daylight Controller
(ODL)

The Yang UI module enables you to interact with the ODL. For more information about
Yang Tools, see https://wiki.opendaylight.org/view/YANG_Tools:Main [YANG_Tools].

https://wiki.opendaylight.org/view/YANG_Tools:Main

OpenDaylight User Guide

7

Figure 2.3. Yang UI

To use Yang UI:

1. Select Yang UI on the left pane. The right pane is divided in two parts.

2. The top part displays a tree of APIs and subAPIs and buttons to call possible functions
(GET, POST, PUT, DELETE, …). Not every subAPIs can call every function. For example,
subAPIs “operational” have GET functionality only. Inputs can be filled from ODL when
existing data from ODL is displayed or can be filled by user on the page and sent to ODL.
Buttons under the API tree are variable. It depends on subAPI specifications. Common
buttons are:

• GET to get data from ODL,

• PUT and POST for sending data to ODL for saving

• DELETE for sending data to ODL for deleting. You must specify the xpath for all these
operations. This path is displayed in the same row before buttons and it can include
text inputs for specific path elements identifiers.

OpenDaylight User Guide

8

Figure 2.4. Yang API Specification

3. The bottom part of the right pane displays inputs according to the chosen subAPI. Every
subAPI is represented by list elements of list statement. It is possible to have a many list
elements of one list. + For example, a device can store multiple flows. In this case “flow”
is name of the list and every list element is different by a key value. List element of list
can obtain other lists. Every list element has a list name, a key name and its value, and a
button for removing this list element. Usually the key of the list statement obtains an ID.
Inputs can be filled from ODL using GET button from xpath part, or can be filled by user
on the page and sent to ODL.

OpenDaylight User Guide

9

Figure 2.5. Yang UI API Specification

4. Click Show Preview button under API tree to display request that will be sent to ODL. A
pane is displayed on the right side with text of request when some input is filled.

Displaying Topology on the Yang UI

To display topology:

1. Select subAPI network-topology <topology revision number> → operational → network-
topology.

2. Get data from ODL by clicking on the “GET” button.

3. Click Display Topology.

OpenDaylight User Guide

10

Figure 2.6. DLUX Yang Topology

Configuring List Elements on the Yang UI

The list is displayed like tree structure with possibility to expand or collapse by the arrow
before name of the list. To configure list elements on the Yang UI:

1. To add a new list element with empty inputs use the plus icon-button + that is provided
after list name. When some list element is added, button with his name and key value is
displayed.

2. To remove several list elements, use the X button that is provided after every list
element.

DLUX List Elements. image::dlux-yang-list elements.png[DLUX list
elements,width=500]

3. Key of list is one or more inputs, which are used like identifier of list element. All list
elements in one list must have different key values. If some elements has the same key
values, the new warning icon ! is displayed near their name buttons.

OpenDaylight User Guide

11

Figure 2.7. DLUX List Warnings

4. When the list obtains at least one list element, after + icon is icon for selecting the list
element displayed. You can choose one of them by clicking the icon. The name button
of the list element and name buttons of its neighbours will be displayed in the row list.
You can can forward or backward row list of list elements name buttons by clicking on
the arrow button on the end of row.

Figure 2.8. DLUX List Button1

OpenDaylight User Guide

12

3. Running XSQL Console Commands and
Queries

Table of Contents
XSQL Overview ... 12
Installing XSQL .. 12
XSQL Console Commands .. 12
XSQL Queries .. 13

XSQL Overview
XSQL is an XML-based query language that describes simple stored procedures which parse
XML data, query or update database tables, and compose XML output. It allows you to
query tree models as if they were a sequential database. For example, you could run a
query that lists all of the ports configured on a particular module and their attributes.

The following sections will cover the XSQL installation process, supported XSQL commands,
and the proper way to structure queries.

Installing XSQL
Before you can run commands from the XSQL console, you must first install XSQL onto your
system:

1. Navigate to the directory in which you unzipped the OpenDaylight source files.

2. Start Karaf: ./karaf

3. Install XSQL: feature:install odl-mdsal-xsql

XSQL Console Commands
When entering a command in the XSQL console, structure it as follows: odl:xsql <XSQL
command>

The following table describes the commands supported in the OpenDaylight Helium
release.

Table 3.1. Supported XSQL Console Commands

Command Description

r Repeats the last command you executed.

list vtables Lists the schema node containers that are currently
installed. Whenever an OpenDaylight module is installed,
its YANG model is placed in the Schema Context. At that

OpenDaylight User Guide

13

point, the XSQL receives a notification, confirms that the
module’s YANG model resides in the Schema Context, and
then maps the model to XSQL by setting up the necessary
vtables and vfields. This command is useful when you need
to determine vtable information for a query.

list vfields <vtable name> Lists the vfields present in a specific vtable. This command
is useful when you need to determine vfields information
for a query.

jdbc <ip address> When the ODL server is behind a firewall, and the
JDBC client cannot connect to the JDBC server, run this
command to start the client as if it was a server and
establish a connection.

exit Closes the console.

tocsv Enables/disables the forwarding of query output as a .csv
file.

filename <filename> Specifies the .tocsv file to which query data is exported. If
you do not specify a value for this option when the toccsv
option is enabled, the filename for the query data file is
generated automatically.

XSQL Queries
Using the information provided by the list vtables and list vfields <vtable name>
commands, you can run a query to extract information that meets the criteria you specify.
Any query you run should be structured as follows:

select <vfields you want to search for, separated by a comma and a space> from <vtables
you want to search in, separated by a comma and a space> where <criteria> ’<criteria
operator>’;

For example, say you want to search the nodes/node.ID field in the nodes/node-connector
table and find every instance of the Hardware-Address object that contains BA in its text
string. To do so, you would enter the following query: Select nodes/node.ID from nodes/
node-connector where Hardware-Address like ’%BA%’;

The following criteria operators are supported:

Table 3.2. Supported XSQL Query Criteria Operators

Criteria Operators Description

= Lists results that equal the value you specify.

!= Lists results that do not equal the value you specify.

like Lists results that contain the substring you specify. For
example, if you specify like %BC%, every string that
contains that particular substring is displayed.

< Lists results that are less than the value you specify.

> Lists results that are more than the value you specify.

and Lists results that match both values you specify.

or Lists results that match either of the two values you
specify.

>= Lists results that are more than or equal to the value you
specify.

⇐ Lists results that are less than or equal to the value you
specify.

OpenDaylight User Guide

14

is null Lists results for which no value is assigned.

not null Lists results for which any value is assigned.

skip Use this operator to list matching results from a child
node, even if its parent node does not meet the specified
criteria. See the following example for more information.

Example: skip Criteria Operator

Say you are looking at the following structure and want to determine all of the ports that
belong to a YY type module:

• Network Element 1

• Module 1, Type XX

• Module 1.1, Type YY

• Port 1

• Port 2

• Module 2, Type YY

• Port 1

• Port 2

If you specify Module.Type=’YY’ in your query criteria, the ports associated with
module 1.1 will not be returned since its parent module is type XX. Instead, enter
Module.Type=’YY’ or skip Module!=’YY’. This tells XSQL to disregard any parent module
data that does not meet the type YY criteria and collect results for any matching child
modules. In this example, you are instructing the query to skip module 1 and collect the
relevant data from module 1.1.

OpenDaylight User Guide

15

4. Setting Up Clustering on an OpenDaylight
Controller

Table of Contents
Clustering Overview .. 15
Single Node Clustering .. 15
Multiple Node Clustering ... 16

Clustering Overview
Clustering is a mechanism that enables multiple processes and programs to work together
as one entity. For example, when you go to google.com and search for something, it may
seem like your search request is processed by only one web server. In reality, your search
request is processed by thousands of web servers connected in a cluster. Similarly, you can
have multiple instances of the OpenDaylight controller working together as one entity.
There are a number of uses for clustering:

• Scaling: If you have multiple controllers running, you can potentially do more work with
or store more data on those controllers if they are clustered. You can also break up your
data into smaller chunks (known as shards) and either distribute that data across the
cluster or perform certain operations on certain members of the cluster.

• High Availability: If you have multiple controllers running and one of them crashes, you
would still have the other instances working and available.

• Data Persistence: You will not lose any data gathered by your controller after a manual
restart or a crash.

The following sections describe how to set up clustering on both individual and multiple
OpenDaylight controllers.

Single Node Clustering
To enable clustering on a single OpenDaylight controller, do the following:

1. Download and unzip a base controller distribution. You must use the new openflow
plugin, so download a distribution where the new openflow plugin is either the default
or can be enabled.

2. Navigate to the <Karaf-distribution-location>/bin directory.

3. Run Karaf: ./karaf

4. Install the clustering feature: feature:install odl-mdsal-clustering

5. If you are using the integration distribution of Karaf, you should also install the open
flow plugin flow services: feature:install odl-openflowplugin-flow-services

OpenDaylight User Guide

16

6. Install the Jolokia bundle: install -s mvn:org.jolokia/jolokia-osgi/1.1.5

After enabling the DistributedDataStore feature in a single instance, you can access the
following features:

• Data Sharding: The in-memory MD-SAL tree is broken up into a number of smaller sub-
trees (inventory, topology, and default).

• Data Persistence: All of the data available on defined data shards is stored on a disk. By
restarting the controller, you can use the persisted data to reinstate those shards to their
previous state.

Multiple Node Clustering
The following sections describe how to set up multiple node clusters in OpenDaylight.

Deployment Considerations

Here is some information to keep in mind when you implement clustering:

• When setting up a cluster with multiple nodes, we recommend that you do so with a
minimum of three machines. You can set up with a cluster with just two nodes. However,
if one of those two nodes go down, the controller will no longer be operational.

• Every device that belongs to a cluster needs to have an identifier. For this purpose,
OpenDaylight uses the node’s role. After you define the first node’s role as member-1 in
the akka.conf file, OpenDaylight uses member-1 to identify that node.

• Data shards are used to house all or a certain segment of a module’s data. For example,
one shard can contain all of a module’s inventory data while another shard contains all
of it’s topology data. If you do not specify a module in the modules.conf file and do not
specify a shard in module-shards.conf, then (by default) all the data is places onto the
default shard (which must also be defined in module-shards.conf file). Each shard has
replicas configured, and the module-shards.conf file is where you can specify where these
replicas reside.

• Say you have a three node cluster on which HA is enabled. A replica of every defined
data shard must be running on all three cluster nodes. This is because OpenDaylight’s
clustering implementation requires a majority of the defined shard replicas to be running
in order to function. If you only define data shard replicas on two of the cluster nodes
and one of those nodes goes down, the corresponding data shards will not function.

• If you have a three node cluster and have defined replicas for a data shard on each
of those nodes, that shard will still function even if only two of the cluster nodes are
running. Note that if one of those two nodes go down, your controller will no longer be
operational.

What considerations need to be made when setting the seed nodes for each member?
Why are we referring to multiple seed nodes when you set only one IP address? Can you
set multiple seed nodes for functional testing?

OpenDaylight User Guide

17

We recommend that you have multiple seed nodes configured. After a cluster member is
started, it sends a message to all of its seed nodes. The cluster member then sends a join
command to the first seed node that responds. If none of its seed nodes reply, the cluster
member repeats this process until it successfully establishes a connection or it is shutdown.

What happens after one node becomes unreachable? Do the other two nodes function
normally? When the first node reconnects, does it automatically synchronize with the
other nodes?

After a node becomes unreachable, it remains down for configurable period of time (10
seconds, by default). Once a node goes down, you need to restart it so that it can rejoin
the cluster. Once a restarted node joins a cluster, it will synchronize with the lead node
automatically.

Can you run a two node cluster for functional testing?

For functional testing, yes. For HA testing, you need to run all three nodes.

Setting Up a Multiple Node Cluster

To run an OpenDaylight controller in a three node cluster, do the following:

1. Determine the three machines that will make up the cluster and copy the controller
distribution to each of those machines.

2. Unzip the controller distribution.

3. Navigate to the <Karaf-distribution-location>/bin directory.

4. Run Karaf: ./karaf

5. Install the clustering feature: feature:install odl-mdsal-clustering

Note

To run clustering, you must install the odl-mdsal-clustering feature on each of
your nodes.

1. If you are using the integration distribution of Karaf, you should also install the open
flow plugin flow services: feature:install odl-openflowplugin-flow-services

2. Install the Jolokia bundle: install -s mvn:org.jolokia/jolokia-osgi/1.1.5

3. On each node, open the following .conf files:

• configuration/initial/akka.conf

• configuration/initial/module-shards.conf

4. In each configuration file, make the following changes:

a. Find every instance of the following lines and replace 127.0.0.1 with the hostname or
IP address of the machine on which the controller will run:

OpenDaylight User Guide

18

netty.tcp {
 hostname = "127.0.0.1"

Note

The value you need to specify will be different for each node in the cluster.

a. Find the following lines and replace 127.0.0.1 with the hostname or IP address of any of
the machines that will be part of the cluster:

cluster {
 seed-nodes = ["akka.tcp://opendaylight-cluster-data@127.0.0.1:2550"]

b. Find the following section and specify the role for each member node. For example, you
could assign the first node with the member-1 role, the second node with the member-2
role, and the third node with the member-3 role.

roles = [
 "member-1"
]

c. Open the configuration/initial/module-shards.conf file and update the items listed in the
following section so that the replicas match roles defined in this host’s akka.conf file.

replicas = [
 "member-1"
]

For reference, view a sample akka.conf file here: https://gist.github.com/
moizr/88f4bd4ac2b03cfa45f0

a. Run the following commands on each of your cluster’s nodes:

• JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

• JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

• JAVA_MAX_MEM=4G JAVA_MAX_PERM_MEM=512m ./karaf

The OpenDaylight controller can now run in a three node cluster. Use any of the three
member nodes to access the data residing in the datastore.

Say you want to view information about shard designated as member-1 on a node. To do
so, query the shard’s data by making the following HTTP request:

GET http://<host>:8181/jolokia/read/
org.opendaylight.controller:Category=Shards,name=member-1-shard-inventory-
config,type=DistributedConfigDatastore

Note

If prompted, enter admin as both the username and password.

https://gist.github.com/moizr/88f4bd4ac2b03cfa45f0
https://gist.github.com/moizr/88f4bd4ac2b03cfa45f0

OpenDaylight User Guide

19

This request should return the following information:

{
 "timestamp": 1410524741,
 "status": 200,
 "request": {
 "mbean": "org.opendaylight.controller:Category=Shards,name=member-1-shard-
inventory-config,type=DistributedConfigDatastore",
 "type": "read"
 },
 "value": {
 "ReadWriteTransactionCount": 0,
 "LastLogIndex": -1,
 "MaxNotificationMgrListenerQueueSize": 1000,
 "ReadOnlyTransactionCount": 0,
 "LastLogTerm": -1,
 "CommitIndex": -1,
 "CurrentTerm": 1,
 "FailedReadTransactionsCount": 0,
 "Leader": "member-1-shard-inventory-config",
 "ShardName": "member-1-shard-inventory-config",
 "DataStoreExecutorStats": {
 "activeThreadCount": 0,
 "largestQueueSize": 0,
 "currentThreadPoolSize": 1,
 "maxThreadPoolSize": 1,
 "totalTaskCount": 1,
 "largestThreadPoolSize": 1,
 "currentQueueSize": 0,
 "completedTaskCount": 1,
 "rejectedTaskCount": 0,
 "maxQueueSize": 5000
 },
 "FailedTransactionsCount": 0,
 "CommittedTransactionsCount": 0,
 "NotificationMgrExecutorStats": {
 "activeThreadCount": 0,
 "largestQueueSize": 0,
 "currentThreadPoolSize": 0,
 "maxThreadPoolSize": 20,
 "totalTaskCount": 0,
 "largestThreadPoolSize": 0,
 "currentQueueSize": 0,
 "completedTaskCount": 0,
 "rejectedTaskCount": 0,
 "maxQueueSize": 1000
 },
 "LastApplied": -1,
 "AbortTransactionsCount": 0,
 "WriteOnlyTransactionCount": 0,
 "LastCommittedTransactionTime": "1969-12-31 16:00:00.000",
 "RaftState": "Leader",
 "CurrentNotificationMgrListenerQueueStats": []
 }
}

The key thing here is the name of the shard. Shard names are structured as follows:

<member-name>-shard-<shard-name-as-per-configuration>-<store-type>

OpenDaylight User Guide

20

Here are a couple sample data short names:

• member-1-shard-topology-config

• member-2-shard-default-operational

Enabling HA on a Multiple Node Cluster

To enable HA in a three node cluster:

1. Open the configuration/initial/module-shards.conf file on each cluster node.

2. Add member-2 and member-3 to the replica list for each data shard.

3. Restart all of the nodes. The nodes should automatically sync up with member-1. After
some time, the cluster should be ready for operation.

When HA is enabled, you must have at least three replicas of every shard. Each node’s
configuration files should look something like this:

module-shards = [
 {
 name = "default"
 shards = [
 {
 name="default"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "topology"
 shards = [
 {
 name="topology"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 },
 {
 name = "inventory"
 shards = [
 {
 name="inventory"
 replicas = [
 "member-1",
 "member-2",
 "member-3"

OpenDaylight User Guide

21

]
 }
]
 },
 {
 name = "toaster"
 shards = [
 {
 name="toaster"
 replicas = [
 "member-1",
 "member-2",
 "member-3"
]
 }
]
 }
]

When HA is enabled on multiple nodes, shards will replicate the data for those nodes.
Whenever the lead replica on a data shard is brought down, another replica takes its place.
As a result, the cluster should remain available. To determine which replica is acting as the
lead on a data shard, make an HTTP request to obtain the information for a data shard on
any of the nodes. The resulting information will indicate which replica is acting as the lead.

Part II. Addons
This second part of the user guide covers project specific usage instructions.

OpenDaylight User Guide

23

5. BGP LS PCEP

Table of Contents
BGP LS .. 23
PCEP .. 26

BGP LS
OpenDaylight comes pre-configured in the installation. You can find it in the opendaylight/
configuration/initial directory and it consists of two files:

31-bgp.xml, which defines the basic parser and RIB support. Unless you need to add a new
AFI/SAFI, you should keep this file as is.

41-bgp-example.xml, which contains a sample configuration which needs to be customized
to your deployment.

Currently the configuration for BGP peer is ignored in the configuration, to prevent the
client from starting with default configuration. Therefore the first step is to uncomment
ALL the commented parts in this file.

1. Adjust values for initial BGP Open message

<module>
 <type>prefix:rib-impl</type>
 <name>example-bgp-rib</name>
 <rib-id>example-bgp-rib</rib-id>
 <local-as>64496</local-as> // Our AS number, we use this in best
 path selection
 <bgp-id>192.0.2.2</bgp-id> // Our BGP identifier, we use this in
 best path selection

2. Specify IP address of your BGP speaker

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer
 </type>
 <name>example-bgp-peer</name>
 <host>192.0.2.1</host> // IP address or hostname
 of the speaker
 <holdtimer>180</holdtimer>

You can also add more BGP peers with different instance name and hostname.

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer
 </type>
 <name>example-bgp-peer2</name>
 <host>192.0.2.2</host>

https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/31-bgp.xml
https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/41-bgp-example.xml

OpenDaylight User Guide

24

 <holdtimer>180</holdtimer>

1. Configure connection attributes (all in milliseconds)

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:reconnectstrategy">
 prefix:timed-reconnect-strategy
 </type>
 <name>example-reconnect-strategy</name>
 <min-sleep>1000</min-sleep> // Minimum sleep time in between
 reconnect tries
 <max-sleep>180000</max-sleep> // Maximum sleep time in between
 reconnect tries
 <sleep-factor>2.00</sleep-factor> // Power factor of the sleep time
 between reconnect tries
 <connect-time>5000</connect-time> // How long we should wait for the
 TCP connect attempt, overrides default connection timeout dictated by TCP
 retransmits
 <executor>
 <type
 xmlns:netty="urn:opendaylight:params:xml:ns:yang:controller:netty">
 netty:netty-event-executor
 </type>
 <name>global-event-executor</name>
 </executor>
</module>

BGP speaker configuration
Previous entries addressed the configuration of a BGP connection initiated by ODL. ODL
also supports BGP Speaker functionality and accepts incoming BGP connections.

The configuration of BGP speaker is located in 41-bgp-example.xml.

<module>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer-acceptor
 </type>
 <name>bgp-peer-server</name>
 <!--Default parameters-->
 <!--<binding-address>0.0.0.0</binding-address>-->
 <!--<binding-port>179</binding-port>-->
 <bgp-dispatcher>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-dispatcher
 </type>
 <name>global-bgp-dispatcher</name>
 </bgp-dispatcher>
 <!--Drops or accepts incoming BGP connection, every BGP Peer that should be
 accepted needs to be added to this registry-->
 <peer-registry>
 <type xmlns:prefix=
"urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer-registry
 </type>
 <name>global-bgp-peer-registry</name>
 </peer-registry>

https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/41-bgp-example.xml

OpenDaylight User Guide

25

</module>

1. Changing speaker configuration

• Changing binding address: Uncomment tag binding-address and change the address
to e.g. 127.0.0.1. The default binding address is 0.0.0.0.

• Changing binding port: Uncomment tag binding-port and change the port to e.g.
1790. The default binding port is 179 as specified in BGP RFC.

2. Configuring incoming BGP connections

By default, the BGP speaker drops all BGP connections from unknown BGP peers. The
decision is made in component bgp-peer-registry that is injected into the speaker (The
registry is configured in 31-bgp.xml).

To add BGP Peer configuration into the registry, it is necessary to configure regular BGP
peer just like in example in 41-bgp-example.xml. Notice that the BGP peer depends on the
same bgp-peer-registry as bgp-speaker:

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer
 </type>
 <name>example-bgp-peer</name>
 <host>192.0.2.1</host>
 ...
 <peer-registry>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer-registry
 </type>
 <name>global-bgp-peer-registry</name>
 </peer-registry>
 ...
</module>

BGP peer registers itself into the registry, which allows incoming BGP connections handled
by the bgp-speaker. (Config attribute peer-registry is optional for now to preserve
backwards compatibility). With this configuration, the connection to 192.0.2.1 is initiated
by ODL but will also be accepted from 192.0.2.1. In case both connections are being
established, only one of them will be preserved and the other will be dropped. The
connection initiated from device with lower bgp id will be dropped by the registry.

There is a way to configure the peer only for incoming connections (The connection will
not be initiated by the ODL, ODL will only wait for incoming connection from the peer. The
peer is identified by its IP address). To configure peer only for incoming connection add
attribute initiate-connection to peer configuration:

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-peer
 </type>
 <name>example-bgp-peer</name>
 <host>192.0.2.1</host> // IP address or hostname
 of the speaker

https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/41-bgp-example.xml

OpenDaylight User Guide

26

 <holdtimer>180</holdtimer>
 <initiate-connection>false</initiate-connection> // Connection will not
 be initiated by ODL
 ...
</module>

The attribute initiate-connection is optional with the default value set to true.

Application peer configuration

Application peer is a special type of BGP peer. It has own BGP RIB. This RIB can be
populated through RESTCONF. If ODL is set as BGP speaker, the changes are sent to other
BGP clients as well. To properly configure application peer, add following lines to 41-bgp-
example.xml and make appropriate changes.

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:bgp-application-peer
 </type>
 <name>example-bgp-peer-app</name>
 <bgp-id>10.1.9.9</bgp-id> <!-- Your local BGP-ID that will be used in BGP
 Best Path Selection algorithm -->
 <target-rib>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:bgp:rib:impl">
 prefix:rib-instance
 </type>
 <name>example-bgp-rib</name> <!-- RIB where the changes from application RIB
 should be propagated -->
 </target-rib>
 <application-rib-id>example-app-rib</application-rib-id> <!-- Your
 application RIB identifier -->
 <data-broker>
 <type
 xmlns:binding="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">
 binding:binding-async-data-broker
 </type>
 <name>binding-data-broker</name>
 </data-broker>
</module>

PCEP
OpenDaylight is pre-configured with baseline PCEP configuration. The default shipped
configuration will start a PCE server on port 4189.

32-pcep.xml - basic PCEP configuration, including session parameters 39-pcep-provider.xml -
configuration for PCEP provider

Configure draft versions

There are already two extensions for PCEP: draft-ietf-pce-stateful-pce - in versions 02 and 07
draft-ietf-pce-pce-initiated-lsp - versions crabbe-initiated-00 and ietf-initiated-00.

https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/41-bgp-example.xml
https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/41-bgp-example.xml
https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/32-pcep.xml
https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/39-pcep-provider.xml
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-09
https://tools.ietf.org/html/draft-ietf-pce-pce-initiated-lsp-01

OpenDaylight User Guide

27

Note

It is important to load the extensions with compatible versions because they
extend each other. In this case crabbe-initiated-00 is compatible with stateful-02
and ietf-initiated-00 is compatible with stateful-07. Default configuration is to
use newest versions of the drafts.

Complete the following steps in order to get stateful02 PCEP connection running and
synchronized.

To use older version: . Switch commented code to ignore stateful-7 and ietf-initiated-00
versions in 32-pcep.xml:

 <!-- This block is draft-ietf-pce-stateful-pce-07 + draft-ietf-pce-
inititated-pce-00 -->
 <!--extension>
 <type>pcepspi:extension</type>
 <name>pcep-parser-ietf-stateful07</name>
 </extension>
 <extension>
 <type>pcepspi:extension</type>
 <name>pcep-parser-ietf-initiated00</name>
 </extension-->
 <!-- This block is draft-ietf-pce-stateful-pce-02 + draft-crabbe-pce-
inititated-pce-00 -->
<extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-ietf-stateful02</name>
</extension>
<extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-crabbe-initiated00</name>
</extension>

1. In the same file, make sure the proposal matches your chosen draft version. Change
stateful07-proposal to stateful02-proposal:

<pcep-session-proposal-factory>
 <type>pcep:pcep-session-proposal-factory</type>
 <name>stateful02-proposal</name>
</pcep-session-proposal-factory>

1. In 39-pcep-provider.xml, stateful-plugin also needs to match. Change stateful07 to
stateful02:

<stateful-plugin>
 <type>prefix:pcep-topology-stateful</type>
 <name>stateful02</name>
</stateful-plugin>

https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/32-pcep.xml
https://jenkins.opendaylight.org/integration/view/Integration%20jobs/job/integration-master-project-centralized-integration/lastSuccessfulBuild/artifact/distributions/serviceprovider/target/distributions-serviceprovider-0.2.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial/39-pcep-provider.xml

OpenDaylight User Guide

28

Configure PCEP segment routing
draft-sivabalan-pce-segment-routing-02 PCEP extension for Segment Routing

PCEP Segment Routing initial configuration: 33-pcep-segment-routing.xml

• To use Segment Routing uncomment two commented blocks

• Activate parsers/serializes extension:

• Create pcep-parser-segment-routing02 instance

• Reconfigure (inject into list of extensions) global-pcep-extensions

<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:sr02:cfg">
 prefix:pcep-parser-segment-routing02
 </type>
 <name>pcep-parser-segment-routing02</name>
</module>
<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 prefix:pcep-extensions-impl
 </type>
 <name>global-pcep-extensions</name>
 <extension>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <name>pcep-parser-segment-routing02</name>
 </extension>
</module>
.
.
.
<services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type
 xmlns:pcepspi="urn:opendaylight:params:xml:ns:yang:controller:pcep:spi">
 pcepspi:extension
 </type>
 <instance>
 <name>pcep-parser-segment-routing02</name>
 <provider>/config/modules/module[name='pcep-parser-segment-
routing02']/instance[name='pcep-parser-segment-routing02']</provider>
 </instance>
 </service>
</services>

• Advertise Segment Routing capability in Open Message:

• Instantiate pcep-session-proposal-factory-sr02

• Reconfigure global-pcep-dispatcher

<module>

http://tools.ietf.org/html/draft-sivabalan-pce-segment-routing-02
https://jenkins.opendaylight.org/bgpcep/job/bgpcep-nightly/ws/pcep/controller-config/src/main/resources/initial/33-pcep-segment-routing.xml

OpenDaylight User Guide

29

 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:sr02:cfg">
 prefix:pcep-session-proposal-factory-sr02
 </type>
 <name>pcep-session-proposal-factory-sr02</name>
</module>
<module>
 <type
 xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:pcep:impl">
 prefix:pcep-dispatcher-impl
 </type>
 <name>global-pcep-dispatcher</name>
 <pcep-session-proposal-factory>
 <type
 xmlns:pcep="urn:opendaylight:params:xml:ns:yang:controller:pcep">
 pcep:pcep-session-proposal-factory
 </type>
 <name>pcep-session-proposal-factory-sr02</name>
 </pcep-session-proposal-factory>
</module>
.
.
.
<services xmlns="urn:opendaylight:params:xml:ns:yang:controller:config">
 <service>
 <type
 xmlns:pcep="urn:opendaylight:params:xml:ns:yang:controller:pcep">
 pcep:pcep-session-proposal-factory
 </type>
 <instance>
 <name>pcep-session-proposal-factory-sr02</name>
 <provider>/config/modules/module[name='pcep-session-proposal-
factory-sr02']/instance[name='pcep-session-proposal-factory-sr02']</provider>
 </instance>
 </service>
</services>

OpenDaylight User Guide

30

6. Defense4All

Table of Contents
Defense4All Overview ... 30
Defense4All User Interface .. 31

Defense4All Overview
Defense4All is an SDN application for detecting and mitigating DDoS attacks. The figure
below depicts the positioning of Defense4All in OpenDaylight environment.

Figure 6.1. Defense4All Overview

The application communicates with OpenDaylight Controller through the ODC north-
bound REST API.

Through the REST API Defense4All performs the following tasks:

1. Monitoring behavior of protected traffic - the application sets flow entries in selected
network locations to read traffic statistics for each of the PNs (aggregating statistics
collected for a given PN from multiple locations).

2. Diverting attacked traffic to selected AMSs – the application set flow entries in selected
network locations to divert traffic to selected AMSs. When an attack is over the
application removes these flow entries, thus returning to normal operation and traffic
monitoring.

Defense4All can optionally communicate with the defined AMSs. For example: To
dynamically configure them, monitor them or collect and act upon attack statistics from

OpenDaylight User Guide

31

the AMSs. The API to AMS is not standardized, and in any case beyond the scope of the
OpenDaylight work. Defense4All contains a reference implementation pluggable driver to
communicate with Radware’s DefensePro AMS.

The application presents its north-bound REST and CLI APIs to allow its manager to:

Control and configure the application (runtime parameters, ODC connectivity, AMSs in
domain, PNs, and so on.). Obtain reporting data – operational or security, current or
historical, unified from Defense4All and other sources such as, ODC and AMSs). Defense4All
provides unified management, reporting and monitoring.

Management - Important part of Defense4All operation is to allow users simple “one
touch” and abstracted provisioning of security services, for both detection and mitigation
operations. The user needs to only specify simple security attributes. Reporting and
monitoring operations - Important part of security services is a combination of (near)
real-time logs for monitoring as well as historical logs for reporting. Defense4All provides
a unified interface for both purposes. The monitoring information is based on various
events collected from Defense4All, AMSs and ODC, allowing rich and correlated view on
events. Logged event records can be operational or security related. The former includes
failures and errors and informational logs. The latter includes detections, attacks and attack
mitigation lifecycles, traffic diversion information and periodic traffic averages. All logs are
persistent (stable storage and replication).

Defense4All User Interface
This section describes how to configure the Defense4All Framework environment.

Configuring the FrameWork Environment
To set Defense4All configuration parameters:

1. From an Internet browser, go to http://<ip address>:8086/controlapps, where <ip
address> is the address for the host that is running Defense4All.

2. From the FrameWork Setup pane, select Framework > Setup.

3. Set the Framework Control Network Address to the IP address Defense4All uses to
access the control network.

4. To the right of the SDN Controllers label, click Add.

5. In the Add SDN Controller pane, set the following parameters:

Parameter Description

Hostname Name of the SDN Controller. This is the SDN Controller
that supports OpenFlow network programming (OFC
stands for OpenFlow Controller). OpenDaylight Controller
provides this flavor both for OpenFlow enabled network
devices and other network devices with adequate plug-ins
in the PFC.

IP address IP address of the SDN Controller.

Port Port number of the SDN Controller.

Statistics Polling Interval The frequency that the SDN Controller polls for statistics.

Username Username to log into the SDN Controller.

http://<ip

OpenDaylight User Guide

32

Parameter Description

Password Password to log into the SDN Controller.

Confirm Password Confirmation of the password of the SDN Controller.

1. Click Submit.

Note

The SDN controller cannot be changed or removed. Only one (1) SDN controller
can be configured. To change the SDN controller, you must reset Defense4All
to factory settings. . In the FrameWork Setup pane, to the right of the Attack
Mitigation Systems (AMSs) label, click Add. . In the Add Attack Mitigation
System (AMS) pane, set the following parameters:

Parameter Description

Name AMS descriptive name.

Brand Select the AMS brand from the drop-down list.

Values: Radware DefensePro, Other

Default: Radware

Note: The Radware DefensePro device can be removed
only when there are no active mitigations (traffic
redirections to it).

Version AMS version.

Note: This parameter is only applicable to Radware
DefensePro.

IP Address AMS IP address.

Note: This parameter is only applicable to Radware
DefensePro.

Port AMS port number.

Note: This parameter is only applicable to Radware
DefensePro.

Username AMS username.

Note: This parameter is only applicable to Radware
DefensePro.

Password Password to log into the AMS.

Note: This parameter is only applicable to Radware
DefensePro.

Confirm Password Confirmation of the password of the AMS.

Note: This parameter is only applicable to Radware
DefensePro.

Health Check Interval Time in seconds.

Note: This parameter is only applicable to Radware
DefensePro. Default: 60 seconds

Note

Only relevant for DefensePro. Layer 2 Broadcast Destination MAC Address,
Multicast Destination MAC Address, Unrecognized L2 Format, and TTL Less

OpenDaylight User Guide

33

Than or Equal to 1 blocking must be configured to avoid Layer 2 loops. For
more information, refer to the discussion on Packet Anomaly protection in the
DefensePro User Guide.

1. Click Submit.

2. In the FrameWork Setup pane, to the right of the Net Nodes label, click Add.

3. In the Add Net Node pane, set the following parameters:

Parameter Description

Name NetNode descriptive name.

ID NetNode ID.

Type (read-only) Default: Openflow

SDN Node Mode (read-only) Default: sdnenablednative.

Health Check Interval (read- only) Default: 60 seconds

4. To the right of the Protected Links label, click Add.

5. In the Add Protected Link pane, set the following parameters:

Parameter Description

Incoming Traffic Port The incoming traffic port number.

Outgoing Traffic Port The outgoing traffic port number.

6. Click OK.

7. To the right of the AMS Connections label, click Add.

8. In the Add AMS Connection pane, set the following parameters:

Parameter Description

Name AMS connection descriptive name.

AMS Name AMS connection name.

NetNode North Port NetNode NothPort.

NetNode South Port NetNode South Port.

AMS North Port AMS North Port.

AMS South Port AMS South Port.

9. Click OK.

10.In the Add Net Node pane, click Submit.

FrameWork Maintenance

This section describes how to run maintenance operations on Defense4All

• Reset to Factory Settings — If you want to reset Defense4All to its factory settings, at the
bottom of the FrameWork Setup pane, click Reset to Factory Settings.

• Restart Framework — To manually restart Defense4All, at the bottom of the FrameWork
Setup pane, click Restart FrameWork.

OpenDaylight User Guide

34

FrameWork Reports

You can generate reports containing syslog messages that have been saved over a period
of time.

To generate FrameWork reports:

1. From an Internet browser enter the IP address for the host that is running Defense4All.

2. In the FrameWork Reports pane, select Framework > Report.

3. In the FrameWork Report pane, select one of the tabs:

a. Query by Time Period

• In the From and To fields, select the appropriate dates to define the range of the
query.

• Select the Event Types you want included in the report.

• Click Run Query. The results display at the bottom of the pane.

• Enter a file path in the Filename filed, and click Export Query to File to save the
query to a file.

b. Query by Last Number of Rows

• In the Number of Rows field, enter the last number of rows in the database you
want displayed in your report.

• Select the Event Types you want included in the report.

• Click Run Query. The results display at the bottom of the pane. You cannot save
this query to a file

c. Cleanup

• In the Delete events older than field, enter a number of days. Events older than
this number of days are deleted.

• Click Submit. The results display at the bottom of the pane. You cannot save this
query to a file.

Configuring Defense4All Protected Objects (POs)

This section describes how to configure Defense4All protected objects (POs).

To set up Defense4All protected objects (POs):

1. From an Internet browser, enter the IP address for the host that is running Defense4All.

2. From the Defense4All Setup pane, select Defense4All > Setup.

3. To the right of the Protected Objects (POs) label, click Add.

OpenDaylight User Guide

35

4. In the Add Protected Object (PO) pane, set the following parameters:

Parameter Description

Name Name of the PO. Valid characters: A–Z, a–z, 0-9, _ NOTE: A
PO cannot be removed when under attack.

IP Address IP address and net mask of the PO.

1. Click Submit.

Defense4All Reports

You can generate reports containing syslog messages that have been saved over a period
of time.

To generate Defense4All reports:

1. From an Internet browser enter the IP address for the host that is running Defense4All.

2. In the Defense4All Reports pane, select Defense4All > Report.

3. In the Defense4All Reports pane, select one of the tabs:

-Query by Time Period

• In the From and To fields, select the appropriate dates to define the range of the query.

• Select the Event Types you want included in the report.

• Click Run Queryv. The results display at the bottom of the pane.

• To save the query to a file, enter a file path in the Filename filed, and click Export Query
to File.

-Query by Last Number of Rows

• In the Number of Rows field, enter the last number of rows in the database you want
displayed in your report.

• Select the Event Types you want included in the report.

• Click Run Query. The results display at the bottom of the pane. You cannot save this
query to a file.

-Cleanup

• In the Delete events older than field, enter a number of days. Events older than this
number of days are deleted.

• Click Submit. The results display at the bottom of the pane. You cannot save this query
to a file.

OpenDaylight User Guide

36

7. Group-Based Policy

Table of Contents
Architecture and Model .. 36
Tutorial ... 36
Contact Information .. 46

The Group-Based Policy implementation for Helium is a Proof of Concept. This Proof of
Concept implementation includes one example of a group-based policy renderer, based on
Open vSwitch, OpenFlow, and OVSDB. Users can create policies and endpoints using the
RESTCONF northbound API.

Architecture and Model
The Group-Based Policy architecture and model are described in the OpenDaylight
Developer’s Guide.

Tutorial
This section will walk you through setting up a simple demo of the OpenFlow overlay
renderer using mininet. This will simulate a scenario with two VM hosts connected over a
VXLAN tunnel.

Prepare the Environment

Start with two running Ubuntu 14.04 systems, which can be either VMs or physical
machines. You’ll need a newer version of openvswitch than exists in Ubuntu 14.04, but you
only need the user space components so this is easy. We’ll start by installing OVS 2.1.2 or
later.

Log into one of your Ubuntu systems, and run:

 OVS_VERSION=2.1.2
 sudo apt-get install build-essential fakeroot debhelper libssl-dev
 wget http://openvswitch.org/releases/openvswitch-${OVS_VERSION}.tar.gz
 tar -xzf openvswitch-${OVS_VERSION}.tar.gz
 cd openvswitch-${OVS_VERSION}
 DEB_BUILD_OPTIONS='parallel=8 nocheck' fakeroot debian/rules binary
 cd ..
 sudo dpkg -i openvswitch-common_${OVS_VERSION}-1_amd64.deb openvswitch-
switch_${OVS_VERSION}-1_amd64.deb
 sudo apt-get install mininet

Now, either run the same commands on the other system, or just copy the openvswitch-
common and openvswitch-switch deb files over and install them, plus install mininet from
apt.

OpenDaylight User Guide

37

Configuring the Test

The test script is found in the source tree under util/testOfOverlay. Copy the .py
files from this directory to each of your test systems. Open config.py in an editor. You
can play with this file later, but for now, just find the section that reads:

 switches = [{'name': 's1',
 'tunnelIp': '10.160.9.20',
 'dpid': '1'},
 {'name': 's2',
 'tunnelIp': '10.160.9.21',
 'dpid': '2'}]

Change the tunnelIp items to be the IP addresses of each of your test systems. The IP
address of host 1 should be assigned to s1 and similarly for host 2 and s2.

Running the Test

Now, run the controller. You can run it on one of your test systems or on a third system.

On test host 1, cd to the directory containing the testOfOverlay script and run:

 CONTROLLER=10.160.31.238
 sudo ./testOfOverlay.py --local s1 --controller ${CONTROLLER}

You’ll need to replace the CONTROLLER address with the IP address of the system where
you ran your controller. This will run mininet and set up the hosts that are configured as
attached to s1. When you’re finished running this, you’ll be at a mininet prompt, but you
won’t be able to do anything because the policy is not set up.

The output will look like:

$ sudo ./testOfOverlay.py --local s1 --controller 10.160.31.238
*** Configuring hosts
h35_2 h35_3 h36_2 h36_3
*** Starting controller
*** Starting 1 switches
s1
POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "1eaf9a67-a171-42a8-9282-71cf702f61dd",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.35.2",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:35:02",
 "ofoverlay:node-connector-id": "openflow:1:1",
 "ofoverlay:node-id": "openflow:1",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint

OpenDaylight User Guide

38

{
 "input": {
 "endpoint-group": "1eaf9a67-a171-42a8-9282-71cf702f61dd",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.35.3",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:35:03",
 "ofoverlay:node-connector-id": "openflow:1:2",
 "ofoverlay:node-id": "openflow:1",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "e593f05d-96be-47ad-acd5-ba81465680d5",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.36.2",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:36:02",
 "ofoverlay:node-connector-id": "openflow:1:3",
 "ofoverlay:node-id": "openflow:1",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "e593f05d-96be-47ad-acd5-ba81465680d5",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.36.3",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:36:03",
 "ofoverlay:node-connector-id": "openflow:1:4",
 "ofoverlay:node-id": "openflow:1",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

*** Starting CLI:
mininet>

On test host 2, you’ll do the same but run instead:

 CONTROLLER=10.160.31.238
 sudo ./testOfOverlay.py --local s2 --controller ${CONTROLLER} --policy

OpenDaylight User Guide

39

This will run mininet on the other system, and also install all the policy required to enable
the connectivity.

The output will look like:

$ sudo ./testOfOverlay.py --local s2 --controller ${CONTROLLER} --policy
*** Configuring hosts
h35_4 h35_5 h36_4 h36_5
*** Starting controller
*** Starting 1 switches
s2
PUT http://10.160.31.238:8080/restconf/config/opendaylight-inventory:nodes
{
 "opendaylight-inventory:nodes": {
 "node": [
 {
 "id": "openflow:1",
 "ofoverlay:tunnel-ip": "10.160.9.20"
 },
 {
 "id": "openflow:2",
 "ofoverlay:tunnel-ip": "10.160.9.21"
 }
]
 }
}

PUT http://10.160.31.238:8080/restconf/config/policy:tenants
{
 "policy:tenants": {
 "tenant": [
 {
 "contract": [
 {
 "clause": [
 {
 "name": "allow-http-clause",
 "subject-refs": [
 "allow-http-subject",
 "allow-icmp-subject"
]
 }
],
 "id": "22282cca-9a13-4d0c-a67e-a933ebb0b0ae",
 "subject": [
 {
 "name": "allow-http-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "direction": "in",
 "name": "http-dest"
 },
 {
 "direction": "out",
 "name": "http-src"
 }
],
 "name": "allow-http-rule"

OpenDaylight User Guide

40

 }
]
 },
 {
 "name": "allow-icmp-subject",
 "rule": [
 {
 "classifier-ref": [
 {
 "name": "icmp"
 }
],
 "name": "allow-icmp-rule"
 }
]
 }
]
 }
],
 "endpoint-group": [
 {
 "consumer-named-selector": [
 {
 "contract": [
 "22282cca-9a13-4d0c-a67e-a933ebb0b0ae"
],
 "name": "e593f05d-96be-47ad-acd5-
ba81465680d5-1eaf9a67-a171-42a8-9282-71cf702f61dd-22282cca-9a13-4d0c-a67e-
a933ebb0b0ae"
 }
],
 "id": "1eaf9a67-a171-42a8-9282-71cf702f61dd",
 "network-domain": "77284c12-a569-4585-b244-
af9b078acfe4",
 "provider-named-selector": []
 },
 {
 "consumer-named-selector": [],
 "id": "e593f05d-96be-47ad-acd5-ba81465680d5",
 "network-domain": "472ab051-554e-45be-
a133-281f0a53412a",
 "provider-named-selector": [
 {
 "contract": [
 "22282cca-9a13-4d0c-a67e-a933ebb0b0ae"
],
 "name": "e593f05d-96be-47ad-acd5-
ba81465680d5-1eaf9a67-a171-42a8-9282-71cf702f61dd-22282cca-9a13-4d0c-a67e-
a933ebb0b0ae"
 }
]
 }
],
 "id": "f5c7d344-d1c7-4208-8531-2c2693657e12",
 "l2-bridge-domain": [
 {
 "id": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "parent": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],

OpenDaylight User Guide

41

 "l2-flood-domain": [
 {
 "id": "34cc1dd1-2c8c-4e61-a177-588b2d4133b4",
 "parent": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6"
 },
 {
 "id": "6e669acf-2fd9-48ea-a9b0-cd98d933a6b8",
 "parent": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6"
 }
],
 "l3-context": [
 {
 "id": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "subject-feature-instances": {
 "classifier-instance": [
 {
 "classifier-definition-id": "4250ab32-e8b8-445a-
aebb-e1bd2cdd291f",
 "name": "http-dest",
 "parameter-value": [
 {
 "name": "type",
 "string-value": "TCP"
 },
 {
 "int-value": "80",
 "name": "destport"
 }
]
 },
 {
 "classifier-definition-id": "4250ab32-e8b8-445a-
aebb-e1bd2cdd291f",
 "name": "http-src",
 "parameter-value": [
 {
 "name": "type",
 "string-value": "TCP"
 },
 {
 "int-value": "80",
 "name": "sourceport"
 }
]
 },
 {
 "classifier-definition-id": "79c6fdb2-1e1a-4832-
af57-c65baf5c2335",
 "name": "icmp",
 "parameter-value": [
 {
 "int-value": "1",
 "name": "proto"
 }
]
 }
]
 },

OpenDaylight User Guide

42

 "subnet": [
 {
 "id": "77284c12-a569-4585-b244-af9b078acfe4",
 "ip-prefix": "10.0.35.1/24",
 "parent": "34cc1dd1-2c8c-4e61-a177-588b2d4133b4",
 "virtual-router-ip": "10.0.35.1"
 },
 {
 "id": "472ab051-554e-45be-a133-281f0a53412a",
 "ip-prefix": "10.0.36.1/24",
 "parent": "6e669acf-2fd9-48ea-a9b0-cd98d933a6b8",
 "virtual-router-ip": "10.0.36.1"
 }
]
 }
]
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "1eaf9a67-a171-42a8-9282-71cf702f61dd",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.35.4",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:35:04",
 "ofoverlay:node-connector-id": "openflow:2:1",
 "ofoverlay:node-id": "openflow:2",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "1eaf9a67-a171-42a8-9282-71cf702f61dd",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.35.5",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:35:05",
 "ofoverlay:node-connector-id": "openflow:2:2",
 "ofoverlay:node-id": "openflow:2",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "e593f05d-96be-47ad-acd5-ba81465680d5",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",

OpenDaylight User Guide

43

 "l3-address": [
 {
 "ip-address": "10.0.36.4",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:36:04",
 "ofoverlay:node-connector-id": "openflow:2:3",
 "ofoverlay:node-id": "openflow:2",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

POST http://10.160.31.238:8080/restconf/operations/endpoint:register-endpoint
{
 "input": {
 "endpoint-group": "e593f05d-96be-47ad-acd5-ba81465680d5",
 "l2-context": "70aeb9ea-4ca1-4fb9-9780-22b04b84a0d6",
 "l3-address": [
 {
 "ip-address": "10.0.36.5",
 "l3-context": "f2311f52-890f-4095-8b85-485ec8b92b3c"
 }
],
 "mac-address": "00:00:00:00:36:05",
 "ofoverlay:node-connector-id": "openflow:2:4",
 "ofoverlay:node-id": "openflow:2",
 "tenant": "f5c7d344-d1c7-4208-8531-2c2693657e12"
 }
}

*** Starting CLI:
mininet>

Verifying

In the default test, we have a total of 2 hosts on each switch in each of 2 endpoint groups,
for a total of eight hosts. The endpoints are in two different subnets, so communicating
across the two endpoint groups requires routing. There is a contract set up that allows
HTTP from EG1 to EG2, and ICMP in both directions between EG1 and EG2.

ICMP

We expect ICMP to work between all pairs of hosts. First, on host one, run pingall as
follows:

mininet> pingall
*** Ping: testing ping reachability
h35_2 -> h35_3 h36_2 h36_3
h35_3 -> h35_2 h36_2 h36_3
h36_2 -> h35_2 h35_3 h36_3
h36_3 -> h35_2 h35_3 h36_2
*** Results: 0% dropped (12/12 received)

and the same on host 2:

mininet> pingall
*** Ping: testing ping reachability

OpenDaylight User Guide

44

h35_4 -> h35_5 h36_4 h36_5
h35_5 -> h35_4 h36_4 h36_5
h36_4 -> h35_4 h35_5 h36_5
h36_5 -> h35_4 h35_5 h36_4

The hosts h35_[n] are in EG1, in the subnet 10.0.35.1/24. Hosts h36_[n] are in EG2,
in the subnet 10.0.36.1/24. These two tests therefore shows broadcast within the flood
domain working to enable ARP, bridging within the endpoint group, and the functioning
of the virtual router which is routing traffic between the two subnets. It also shows the
ICMP policy allowing the ping between the two groups.

Now we can test connectivity over the tunnel:

mininet> h35_2 ping -c1 10.0.35.4
PING 10.0.35.4 (10.0.35.4) 56(84) bytes of data.
64 bytes from 10.0.35.4: icmp_seq=1 ttl=64 time=1.78 ms

--- 10.0.35.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.786/1.786/1.786/0.000 ms
mininet> h35_2 ping -c1 10.0.35.5
PING 10.0.35.5 (10.0.35.5) 56(84) bytes of data.
64 bytes from 10.0.35.5: icmp_seq=1 ttl=64 time=2.59 ms

--- 10.0.35.5 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.597/2.597/2.597/0.000 ms
mininet> h35_2 ping -c1 10.0.36.4
PING 10.0.36.4 (10.0.36.4) 56(84) bytes of data.
64 bytes from 10.0.36.4: icmp_seq=1 ttl=62 time=2.64 ms

--- 10.0.36.4 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.641/2.641/2.641/0.000 ms
mininet> h35_2 ping -c1 10.0.36.5
PING 10.0.36.5 (10.0.36.5) 56(84) bytes of data.
64 bytes from 10.0.36.5: icmp_seq=1 ttl=62 time=2.93 ms

--- 10.0.36.5 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.936/2.936/2.936/0.000 ms

This shows all those same features working transparently across the tunnel to the hosts on
the other switch.

HTTP

We expect HTTP to work only when going from EG1 to EG2, and only on port 80. Let’s
check. First, we’ll start a web server on h36_2 by running this on host 1:

 mininet> h36_2 python -m SimpleHTTPServer 80

Note that this will block your prompt until you Ctrl-C it later.

Now on host 2, run:

mininet> h35_4 curl http://10.0.36.2
 % Total % Received % Xferd Average Speed Time Time Time
 Current

OpenDaylight User Guide

45

 Dload Upload Total Spent Left Speed
100 488 100 488 0 0 72944 0 --:--:-- --:--:-- --:--:-- 97600
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

config.py
config.pyc
mininet_gbp.py
mininet_gbp.pyc
odl_gbp.py
odl_gbp.pyc
testOfOverlay.py

<hr>
</body>
</html>

You can see that the host in endpoint group 1 is able to access the server in endpoint group
2.

Let’s try the reverse. Ctrl-C the server on host 1 and then run:

 mininet> h35_2 python -m SimpleHTTPServer 80

We can still access the server from h35_4 on host 2, because it’s in the same endpoint
group:

mininet> h35_4 curl http://10.0.35.2
 % Total % Received % Xferd Average Speed Time Time Time
 Current
 Dload Upload Total Spent Left Speed
100 488 100 488 0 0 55625 0 --:--:-- --:--:-- --:--:-- 61000
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
<title>Directory listing for /</title>
<body>
<h2>Directory listing for /</h2>
<hr>

config.py
config.pyc
mininet_gbp.py
mininet_gbp.pyc
odl_gbp.py
odl_gbp.pyc
testOfOverlay.py

<hr>
</body>
</html>

But we cannot access it from h36_4 on host 2, because it’s in a different endpoint group
and our contract allows HTTP only in the other direction:

mininet> h36_4 curl http://10.0.35.2 --connect-timeout 3
 % Total % Received % Xferd Average Speed Time Time Time
 Current
 Dload Upload Total Spent Left Speed

OpenDaylight User Guide

46

 0 0 0 0 0 0 0 0 --:--:-- 0:00:03 --:--:-- 0
curl: (28) Connection timed out after 3001 milliseconds

Contact Information
Mailing List groupbasedpolicy-users@lists.opendaylight.org

IRC freenode.net →opendaylight-group-policy

Repository https://git.opendaylight.org/gerrit/groupbasedpolicy

mailto:groupbasedpolicy-users@lists.opendaylight.org
https://git.opendaylight.org/gerrit/groupbasedpolicy

OpenDaylight User Guide

47

8. L2Switch

Table of Contents
Running the L2Switch project .. 47
Create a network using mininet .. 47
Generating network traffic using mininet .. 48
Checking Address Observations ... 48
Checking Hosts .. 48
Checking STP status of each link .. 49
Miscellaneous mininet commands .. 50
Components of the L2Switch .. 50
Configuration of L2Switch Components ... 51

The L2Switch project provides Layer2 switch functionality.

Running the L2Switch project

Check out the project using git
git clone https://git.opendaylight.org/gerrit/p/l2switch.git

The above command will create a directory called "l2switch" with the project.

Run the distribution

To run the base distribution, you can use the following command

./distribution/base/target/distributions-l2switch-base-0.1.0-SNAPSHOT-
osgipackage/opendaylight/run.sh

If you need additional resources, you can use these command line arguments:

-Xms1024m -Xmx2048m -XX:PermSize=512m -XX:MaxPermSize=1024m'

To run the karaf distribution, you can use the following command:

./distribution/karaf/target/assembly/bin/karaf

Create a network using mininet
sudo mn --controller=remote,ip=<Controller IP> --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13
sudo mn --controller=remote,ip=127.0.0.1 --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13

The above command will create a virtual network consisting of 3 switches. Each switch will
connect to the controller located at the specified IP, i.e. 127.0.0.1

OpenDaylight User Guide

48

sudo mn --controller=remote,ip=127.0.0.1 --mac --topo=linear,3 --switch
 ovsk,protocols=OpenFlow13

The above command has the "mac" option, which makes it easier to distinguish between
Host MAC addresses and Switch MAC addresses.

Generating network traffic using mininet
h1 ping h2

The above command will cause host1 (h1) to ping host2 (h2)

pingall

pingall will cause each host to ping every other host.

Checking Address Observations
Address Observations are added to the Inventory data tree.

The Address Observations on a Node Connector can be checked through a browser or a
REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/
node/openflow:1/node-connector/openflow:1:1

Figure 8.1. Address Observations

Checking Hosts
Host information is added to the Topology data tree.

OpenDaylight User Guide

49

• Host address

• Attachment point (link) to a node/switch

This host information and attachment point information can be checked through a browser
or a REST Client.

http://10.194.126.91:8080/restconf/operational/network-topology:network-
topology/topology/flow:1/

Figure 8.2. Hosts

Checking STP status of each link
STP Status information is added to the Inventory data tree.

• A status of "forwarding" means the link is active and packets are flowing on it.

• A status of "discarding" means the link is inactive and packets are not sent over it.

The STP status of a link can be checked through a browser or a REST Client.

http://10.194.126.91:8080/restconf/operational/opendaylight-inventory:nodes/
node/openflow:1/node-connector/openflow:1:2

OpenDaylight User Guide

50

Figure 8.3. STP status

Miscellaneous mininet commands
link s1 s2 down

This will bring the link between switch1 (s1) and switch2 (s2) down

link s1 s2 up

This will bring the link between switch1 (s1) and switch2 (s2) up

link s1 h1 down

This will bring the link between switch1 (s1) and host1 (h1) down

Components of the L2Switch
• Packet Handler

• Decodes the packets coming to the controller and dispatches them appropriately

• Loop Remover

• Removes loops in the network

• Arp Handler

• Handles the decoded ARP packets

• Address Tracker

• Learns the Addresses (MAC and IP) of entities in the network

OpenDaylight User Guide

51

• Host Tracker

• Tracks the locations of hosts in the network

• L2Switch Main

• Installs flows on each switch based on network traffic

Configuration of L2Switch Components
This section details the configuration settings for the components that can be configured.

The base distribution configuration files are located in distribution/base/target/
distributions-l2switch-base-0.1.0-SNAPSHOT-osgipackage/opendaylight/configuration/initial

The karaf distribution configuration files are located in distribution/karaf/target/assembly/
etc/opendaylight/karaf

• Loop Remover (52-loopremover.xml)

• is-install-lldp-flow

• "true" means a flow that sends all LLDP packets to the controller will be installed on
each switch

• "false" means this flow will not be installed

• lldp-flow-table-id

• The LLDP flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-install-lldp-flow" is set to "true"

• lldp-flow-priority

• The LLDP flow will be installed with the specified priority

• This field is only relevant when "is-install-lldp-flow" is set to "true"

• lldp-flow-idle-timeout

• The LLDP flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• This field is only relevant when "is-install-lldp-flow" is set to "true"

• lldp-flow-hard-timeout

• The LLDP flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

• This field is only relevant when "is-install-lldp-flow" is set to "true"

• graph-refresh-delay

OpenDaylight User Guide

52

• A graph of the network is maintained and gets updated as network elements go up/
down (i.e. links go up/down and switches go up/down)

• After a network element going up/down, it waits graph-refresh-delay seconds
before recomputing the graph

• A higher value has the advantage of doing less graph updates, at the potential cost
of losing some packets because the graph didn’t update immediately.

• A lower value has the advantage of handling network topology changes quicker, at
the cost of doing more computation.

• Arp Handler (54-arphandler.xml)

• is-proactive-flood-mode

• "true" means that flood flows will be installed on each switch. With this flood flow,
each switch will flood a packet that doesn’t match any other flows.

• Advantage: Fewer packets are sent to the controller because those packets are
flooded to the network.

• Disadvantage: A lot of network traffic is generated.

• "false" means the previously mentioned flood flows will not be installed. Instead an
ARP flow will be installed on each switch that sends all ARP packets to the controller.

• Advantage: Less network traffic is generated.

• Disadvantage: The controller handles more packets (ARP requests & replies) and
the ARP process takes longer than if there were flood flows.

• flood-flow-table-id

• The flood flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-proactive-flood-mode" is set to "true"

• flood-flow-priority

• The flood flow will be installed with the specified priority

• This field is only relevant when "is-proactive-flood-mode" is set to "true"

• flood-flow-idle-timeout

• The flood flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• This field is only relevant when "is-proactive-flood-mode" is set to "true"

• flood-flow-hard-timeout

OpenDaylight User Guide

53

• The flood flow will timeout (removed from the switch) after x seconds, regardless of
how many packets it is forwarding

• This field is only relevant when "is-proactive-flood-mode" is set to "true"

• arp-flow-table-id

• The ARP flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-proactive-flood-mode" is set to "false"

• arp-flow-priority

• The ARP flow will be installed with the specified priority

• This field is only relevant when "is-proactive-flood-mode" is set to "false"

• arp-flow-idle-timeout

• The ARP flow will timeout (removed from the switch) if the flow doesn’t forward a
packet for x seconds

• This field is only relevant when "is-proactive-flood-mode" is set to "false"

• arp-flow-hard-timeout

• The ARP flow will timeout (removed from the switch) after arp-flow-hard-timeout
seconds, regardless of how many packets it is forwarding

• This field is only relevant when "is-proactive-flood-mode" is set to "false"

• Address Tracker (56-addresstracker.xml)

• timestamp-update-interval

• A last-seen timestamp is associated with each address. This last-seen timestamp will
only be updated after timestamp-update-interval milliseconds.

• A higher value has the advantage of performing less writes to the database.

• A lower value has the advantage of knowing how fresh an address is.

• observe-addresses-from

• IP and MAC addresses can be observed/learned from ARP, IPv4, and IPv6 packets.
Set which packets to make these observations from.

• L2Switch Main (58-l2switchmain.xml)

• is-install-dropall-flow

• "true" means a drop-all flow will be installed on each switch, so the default action
will be to drop a packet instead of sending it to the controller

OpenDaylight User Guide

54

• "false" means this flow will not be installed

• dropall-flow-table-id

• The dropall flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-priority

• The dropall flow will be installed with the specified priority

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-idle-timeout

• The dropall flow will timeout (removed from the switch) if the flow doesn’t forward
a packet for x seconds

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• dropall-flow-hard-timeout

• The dropall flow will timeout (removed from the switch) after x seconds, regardless
of how many packets it is forwarding

• This field is only relevant when "is-install-dropall-flow" is set to "true"

• is-learning-only-mode

• "true" means that the L2Switch will only be learning addresses. No additional flows
to optimize network traffic will be installed.

• "false" means that the L2Switch will react to network traffic and install flows on the
switches to optimize traffic. Currently, MAC-to-MAC flows are installed.

• reactive-flow-table-id

• The reactive flow will be installed on the specified flow table of each switch

• This field is only relevant when "is-learning-only-mode" is set to "false"

• reactive-flow-priority

• The reactive flow will be installed with the specified priority

• This field is only relevant when "is-learning-only-mode" is set to "false"

• reactive-flow-idle-timeout

• The reactive flow will timeout (removed from the switch) if the flow doesn’t forward
a packet for x seconds

• This field is only relevant when "is-learning-only-mode" is set to "false"

OpenDaylight User Guide

55

• reactive-flow-hard-timeout

• The reactive flow will timeout (removed from the switch) after x seconds, regardless
of how many packets it is forwarding

• This field is only relevant when "is-learning-only-mode" is set to "false"

OpenDaylight User Guide

56

9. ODL-SDNi
The User Guide for ODL-SDNi can be found on the OpenDaylight wiki here: https://
wiki.opendaylight.org/view/ODL-SDNiApp:User_Guide

https://wiki.opendaylight.org/view/ODL-SDNiApp:User_Guide
https://wiki.opendaylight.org/view/ODL-SDNiApp:User_Guide

OpenDaylight User Guide

57

10. Packet Cable MultiMedia (PCMM) Service

Table of Contents
Overview ... 57
Architecture .. 58
Features .. 59
Support ... 59

Packet Cable MultiMedia (PCMM) provides an interface to control and management service
flow for CMTS network elements. A service flows constitute a DOCSIS data path between
a CMTS and a subscriber’s cable modem (CM) guaranteed application specific quality of
service (QoS), known as Dynamic Quality of Service (DQoS). PCMM offers (MSOs) the ability
to deliver new services using existing cable infrastructure. MSOs have already begun to
apply PCMM technology for expanding their multimedia service offerings.

Overview
The PCMM architecture comprises the following components:

• The Application Manager, which specifies QoS requirements to the Policy Server on a per-
application basis.

• The Policy Server, which allocates network resources per subscriber and per application,
ensuring that consumption meets MSO priorities.

• The Cable Modem Termination System (CMTS), which enforces policies according to
bandwidth capacity.

• The Cable Modem, which resides on the client side and connects the client’s network to
the cable system.

PacketCable Multimedia defines a service delivery framework that provides general-
purpose QoS, event-based accounting, and security functionality founded upon the
mechanisms defined in PacketCable 1.x. However, due to the broader spectrum of
applications and services addressed by this initiative, each of these functional areas has
been revisited and generalized for the present purposes. Telephony-specific requirements
and interfaces (e.g., call signaling, PSTN interconnection and electronic surveillance)
are not part of PacketCable Multimedia, while core functionality such as QoS resource
management mechanisms, has been enhanced. Throughout this process, one of the
primary objectives of this work has been to leverage and reuse as much of the existing
body of PacketCable 1.x investment, knowledge base, and technical functionality as
possible. Key features of the described Multimedia service delivery framework include:

• Simple, powerful access to DOCSIS QoS mechanisms supporting both time and volume-
based network resource authorizations,

• Abstract, event-based network resource auditing and management mechanisms,

OpenDaylight User Guide

58

• A robust security infrastructure that provides integrity and appropriate levels of
protection across all interfaces.

The goal of this project is to utilizes the OpenDayLight controller platform as for the
Application Manager and parts of the Policy Server and leverage the as many existing
components offered by the platform.

The initial southbound transport has been written to the following version of the
specification: http://www.cablelabs.com/wp-content/uploads/specdocs/PKT-SP-MM-
I05-091029.pdf

Architecture
Figure 10.1. Architecture Overview

The OpenDaylight Packetcable PCMM includes:

http://www.cablelabs.com/wp-content/uploads/specdocs/PKT-SP-MM-I05-091029.pdf
http://www.cablelabs.com/wp-content/uploads/specdocs/PKT-SP-MM-I05-091029.pdf

OpenDaylight User Guide

59

• Packetcable PCMM Provider

• Packetcable PCMM Consumer

• Packetcable PCMM Model

• Southbound ODL plugin supporting PCMM/COPS protocol driver

• Packetcable PCMM RESTCONF Service API

Features
A brief description of some of what this feature has to offer:

• Provision a CMTS

• Flow Programmer match-only for managing DOCSIS (service) flows

• RESTCONF APIs for provisioning CMTS network elements

• HTML Provisioning Interface and some Python examples

• RESTCONF APIs for provisioning Service Flow values and types

• RESTCONF APIs for provisioning QoS (or metering) parameters

• SAL extensions for DOCSIS specific data model and configuration APIs

• PCMM/COPS protocol transport plugin

Install
opendaylight-user@root>feature:install odl-packetcable-all

Support
For support please contact the packetcable project at:

• PCMM PacketCable mailing list: dev@lists.opendaylight.org

mailto:dev@lists.opendaylight.org

OpenDaylight User Guide

60

11. Plugin for OpenContrail
The User Guide for the Plugin for OpenContrail can be found on
the OpenDaylight wiki here: https://wiki.opendaylight.org/view/
Southbound_Plugin_to_the_OpenContrail_Platform:User_Guide

https://wiki.opendaylight.org/view/Southbound_Plugin_to_the_OpenContrail_Platform:User_Guide
https://wiki.opendaylight.org/view/Southbound_Plugin_to_the_OpenContrail_Platform:User_Guide

OpenDaylight User Guide

61

12. TCP-MD5
The User Guide for TCP-MD5 can be found on the OpenDaylight wiki here: https://
wiki.opendaylight.org/view/TCPMD5:Helium_User_Guide

https://wiki.opendaylight.org/view/TCPMD5:Helium_User_Guide
https://wiki.opendaylight.org/view/TCPMD5:Helium_User_Guide

OpenDaylight User Guide

62

13. VTN

Table of Contents
VTN Overview ... 62
VTN Installation Guide .. 70
How to set up OpenStack for the integration with VTN Manager 72
VTN Usage Examples ... 93

VTN Overview
OpenDaylight Virtual Tenant Network (VTN) is an application that provides multi-tenant
virtual network on an SDN controller.

Conventionally, huge investment in the network systems and operating expenses are
needed because the network is configured as a silo for each department and system. So,
various network appliances must be installed for each tenant and those boxes cannot be
shared with others. It is a heavy work to design, implement and operate the entire complex
network.

The uniqueness of VTN is a logical abstraction plane. This enables the complete separation
of logical plane from physical plane. Users can design and deploy any desired network
without knowing the physical network topology or bandwidth restrictions.

VTN allows the users to define the network with a look and feel of conventional L2/L3
network. Once the network is designed on VTN, it will automatically be mapped into
underlying physical network, and then configured on the individual switch leveraging
SDN control protocol. The definition of logical plane makes it possible not only to hide
the complexity of the underlying network but also to better manage network resources.
It achieves reducing reconfiguration time of network services and minimizing network
configuration errors.

OpenDaylight User Guide

63

Figure 13.1. VTN Overview

Network Virtualization Function

The user first defines a VTN. Then, the user maps the VTN to a physical network, which
enables communication to take place according to the VTN definition. With the VTN
definition, L2 and L3 transfer functions and flow-based traffic control functions (filtering
and redirect) are possible.

Virtual Network Construction

The following table shows the elements which make up the VTN. In the VTN, a virtual
network is constructed using virtual nodes (vBridge, vRouter) and virtual interfaces and
links. It is possible to configure a network which has L2 and L3 transfer function, by
connecting the virtual intrefaces made on virtual nodes via virtual links.

vBridge The logical representation of L2 switch function.

vRouter The logical representation of router function.

vTep The logical representation of Tunnel End Point - TEP.

vTunnel The logical representation of Tunnel.

vBypass The logical representation of connectivity between
controlled networks.

Virtual interface The representation of end point on the virtual node.

Virtual Linkv(vLink) The logical representation of L1 connectivity between
virtual interfaces.

OpenDaylight User Guide

64

The following figure shows an example of a constructed virtual network. VRT is defined as
the vRouter, BR1 and BR2 are defined as vBridges. interfaces of the vRouter and vBridges
are connected using vLinks.

Figure 13.2. VTN Construction

Mapping of Physical Network Resources

Map physical network resources to the constructed virtual network. Mapping identifies
which virtual network each packet transmitted or received by an OpenFlow switch belongs
to, as well as which interface in the OpenFlow switch transmits or receives that packet.
There are two mapping methods. When a packet is received from the OFS, port mapping is
first searched for the corresponding mapping definition, then VLAN mapping is searched,
and the packet is mapped to the relevant vBridge according to the first matching mapping.

Port mapping Maps physical network resources to an interface of
vBridge using Switch ID, Port ID and VLAN ID of the
incoming L2 frame. Untagged frame mapping is also
supported.

VLAN mapping Maps physical network resources to a vBridge using VLAN
ID of the incoming L2 frame.Maps physical resources of a
particular switch to a vBridge using switch ID and VLAN ID
of the incoming L2 frame.

MAC mapping Maps physical resources to an interface of vBridge
using MAC address of the incoming L2 frame(The initial
contribution does not include this method).

OpenDaylight User Guide

65

VTN can learn the terminal information from a terminal that is connected to a switch which
is mapped to VTN. Further, it is possible to refer that terminal information on the VTN.

• Learning terminal information VTN learns the information of a terminal that belongs to
VTN. It will store the MAC address and VLAN ID of the terminal in relation to the port of
the switch.

• Aging of terminal information Terminal information, learned by the VTN, will be
maintained until the packets from terminal keep flowing in VTN. If the terminal gets
disconnected from the VTN, then the aging timer will start clicking and the terminal
information will be maintained till timeout.

The following figure shows an example of mapping. An interface of BR1 is mapped to port
GBE0/1 of OFS1 using port mapping. Packets received from GBE0/1 of OFS1 are regarded
as those from the corresponding interface of BR1. BR2 is mapped to VLAN 200 using VLAN
mapping. Packets with VLAN tag 200 received from any ports of any OFSs are regarded as
those from an interface of BR2.

Figure 13.3. VTN Mapping

vBridge Functions
The vBridge provides the bridge function that transfers a packet to the intended virtual
port according to the destination MAC address. The vBridge looks up the MAC address

OpenDaylight User Guide

66

table and transmits the packet to the corresponding virtual interface when the destination
MAC address has been learned. When the destination MAC address has not been learned,
it transmits the packet to all virtual interfaces other than the receiving port (flooding). MAC
addresses are learned as follows.

• MAC address learning The vBridge learns the MAC address of the connected host. The
source MAC address of each received frame is mapped to the receiving virtual interface,
and this MAC address is stored in the MAC address table created on a per-vBridge basis.

• MAC address aging The MAC address stored in the MAC address table is retained as long
as the host returns the ARP reply. After the host is disconnected, the address is retained
until the aging timer times out. To have the vBridge learn MAC addresses statically, you
can register MAC addresses manually.

vRouter Functions

The vRouter transfers IPv4 packets between vBridges. The vRouter supports routing, ARP
learning, and ARP aging functions. The following outlines the functions.

• Routing function When an IP address is registered with a virtual interface of the vRouter,
the default routing information for that interface is registered. It is also possible to
statically register routing information for a virtual interface.

• ARP learning function The vRouter associates a destination IP address, MAC address
and a virtual interface, based on an ARP request to its host or a reply packet for an
ARP request, and maintains this information in an ARP table prepared for each routing
domain. The registered ARP entry is retained until the aging timer, described later,
times out. The vRouter transmits an ARP request on an individual aging timer basis and
deletes the associated entry from the ARP table if no reply is returned. For static ARP
learning, you can register ARP entry information manually. *DHCP relay agent function
The vRouter also provides the DHCP relay agent function.

Flow Filter Functions

Flow Filter function is similar to ACL. It is possible to allow or prohibit communication
with only certain kind of packets that meet a particular condition. Also, it can perform a
processing called Redirection - WayPoint routing, which is different from the existing ACL.
Flow Filter can be applied to any interface of a vNode within VTN, and it is possible to the
control the packets that pass interface. The match conditions that could be specified in
Flow Filter are as follows. It is also possible to specify a combination of multiple conditions.

• Source MAC address

• Destination MAC address

• MAC ether type

• VLAN Priority

• Source IP address

• Destination IP address

OpenDaylight User Guide

67

• DSCP

• IP Protocol

• TCP/UDP source port

• TCP/UDP destination port

• ICMP type

• ICMP code

The types of Action that can be applied on packets that match the Flow Filter conditions
are given in the following table. It is possible to make only those packets, which match
a particular condition, to pass through a particular server by specifying Redirection in
Action. E.g., path of flow can be changed for each packet sent from a particular terminal,
depending upon the destination IP address. VLAN priority control and DSCP marking are
also supported.

Pass Pass particular packets matching the specified conditions.

Drop Discards particular packets matching the specified
conditions.

Redirection Redirects the packet to a desired virtual interface. Both
Transparent Redirection (not changing MAC address)
and Router Redirection (changing MAC address) are
supported.

The following figure shows an example of how the flow filter function works.

If there is any matching condition specified by flow filter when a packet
 being transferred within a virtual network goes through a virtual interface,
 the function evaluates the matching condition to see whether the packet
 matches it.
If the packet matches the condition, the function applies the matching action
 specified by flow filter. In the example shown in the figure, the function
 evaluates the matching condition at BR1 and discards the packet if it matches
 the condition.

OpenDaylight User Guide

68

Figure 13.4. VTN FlowFilter

Multiple SDN Controller Coordination

With the network abstractions, VTN enables to configure virtual network across multiple
SDN controllers. This provides highly scalable network system.

VTN can be created on each SDN controller. If users would like to manage those multiple
VTNs with one policy, those VTNs can be integrated to a single VTN.

As a use case, this feature is deployed to multi data center environment. Even if those data
centers are geographically separated and controlled with different controllers, a single
policy virtual network can be realized with VTN.

Also, one can easily add a new SDN Controller to an existing VTN or delete a particular SDN
Controller from VTN.

In addition to this, one can define a VTN which covers both OpenFlow network and
Overlay network at the same time.

Flow Filter, which is set on the VTN, will be automatically applied on the newly added SDN
Controller.

OpenDaylight User Guide

69

Coordination between OpenFlow Network and L2/L3
Network

It is possible to configure VTN on an environment where there is mix of L2/L3 switches
as well. L2/L3 switch will be shown on VTN as vBypass. Flow Filter or policing cannot be
configured for a vBypass. However, it is possible to treat it as a virtual node inside VTN.

Virtual Tenant Network (VTN) API

VTN provides Web APIs. They are implemented by REST architecture and provide the access
to resources within VTN that are identified by URI. User can perform the operations like
GET/PUT/POST/DELETE against the virtual network resources (e.g. vBridge or vRouter) by
sending a message to VTN through HTTPS communication in XML or JSON format.

Figure 13.5. VTN API

Function Outline

VTN provides following operations for various network resources.

Resources GET POST PUT DELETE

VTN Yes Yes Yes Yes

vBridge Yes Yes Yes Yes

vRouter Yes Yes Yes Yes

vTep Yes Yes Yes Yes

vTunnel Yes Yes Yes Yes

vBypass Yes Yes Yes Yes

vLink Yes Yes Yes Yes

Interface Yes Yes Yes Yes

Port map Yes No Yes Yes

Vlan map Yes Yes Yes Yes

Flowfilter (ACL/
redirect)

Yes Yes Yes Yes

Controller information Yes Yes Yes Yes

Physical topology
information

Yes No No No

Alarm information Yes No No No

OpenDaylight User Guide

70

(Example) Connecting the terminal to virtual network

The following is an example of the usage to connect the terminal to the network.

• Create VTN

 curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: PASSWORD' -H 'ipaddr: 127.0.0.1' \
 -d '{"vtn":{"vtn_name":"VTN1"}}' http://172.1.0.1:8080/vtn-webapi/vtns.json

• Create Controller Information

 curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: PASSWORD' -H 'ipaddr: 127.0.0.1' \
 -d '{"controller": {"controller_id":"CONTROLLER1","ipaddr":"172.1.0.1",
"type":"pfc","username":"root", \
 "password":"PASSWORD","version":"5.0"}}' http://172.1.0.1:8080/vtn-webapi/
controllers.json

• Create vBridge under VTN

 curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: PASSOWRD' -H 'ipaddr: 127.0.0.1' \
 -d '{"vbridge":{"vbr_name":"VBR1","controller_id": "CONTROLLER1",
"domain_id": "(DEFAULT)"}}' \
 http://172.1.0.1:8080/vtn-webapi/vtns/VTN1/vbridges.json

• Create the interface to connect the terminal under vBridge

 curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: PASSWORD' -H 'ipaddr: 127.0.0.1' \
 -d '{"interface":{"if_name":"IF1"}}' http://172.1.0.1:8080/vtn-webapi/vtns/
VTN1/vbridges/VBR1/interfaces.json

VTN Installation Guide
This guide explains how to install VTN Coordinator and VTN Manager to use VTN API.

VTN Manager is a set of OSGi bundles running in OpenDaylight controller, and VTN
Coordinator is an application running outside the controller.

It is recommended to install VTN Coordinator and OpenDaylight controller on different
machines, since their supported platforms and prerequisites are different.

Supported Platforms
Software Supported Platforms

VTN Manager All Java Platform

VTN Coordinator (64-bit version of below Linux variants) Fedora 20 CentOS
6 RHEL 6 RHEL 7 CentOS 7

Downloading Helium

• Go to the download page of opendaylight.org. http://www.opendaylight.org/software/
downloads

http://www.opendaylight.org/software/downloads
http://www.opendaylight.org/software/downloads

OpenDaylight User Guide

71

• Download the "Pre-Built Zip File" or "Pre-Built Tar File" of the latest Helium.

• Extract files from the downloaded file. e.g.

 unzip distribution-karaf-0.2.1-Helium-SR1.zip
 or
 tar zxvf distribution-karaf-0.2.1-Helium-SR1.tar.gz

Setting up VTN Coordinator

• Arrange a physical/virtual server with any one of the supported 64-bit OS environment
listed above.

Installing the Java

• For RHEL/CentOS 6.1 (x86_64) Download Oracle JDK 7 and install it. http://
www.oracle.com/technetwork/java/javase/downloads/index.html

• For RHEL/CentOS 6.4 (x86_64)

 Install OpenJDK 7.
 yum install java-1.7.0-openjdk-devel

• For Fedora 19/20 Install OpenJDK 7

 yum install java-1.7.0-openjdk-devel

Installing prerequisites

• For RHEL 6

yum install perl-Digest-SHA uuid libxslt libcurl unixODBC
wget http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
rpm -Uvh epel-release-6-8.noarch.rpm
yum install json-c

• For CentOS6 and Fedora 20

yum install perl-Digest-SHA uuid libxslt libcurl unixODBC json-c

Installing PostgreSQL Database

• Configure Yum repository to download the latest rpms for PostgreSQL 9.1

 rpm -ivh http://yum.postgresql.org/9.1/redhat/rhel-6-x86_64/pgdg-
redhat91-9.1-5.noarch.rpm

• Install the required PostgreSQL packages

yum install postgresql91-libs postgresql91 postgresql91-server postgresql91-
contrib postgresql91-odbc

Note

* If you are facing any problems while installing postgreSQL
rpm, Please refer to: https://wiki.opendaylight.org/view/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting#Problems_while_Installing_PostgreSQL_due_to_openssl

OpenDaylight User Guide

72

OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting→Problems_while_Installing_PostgreSQL_due_to_openssl
* VTN Coordinator support PostgreSQL version greater than 9.1 only and
currently tested with 9.1 and 9.3. Please ensure the PostgreSQL version>=9.1 is
installed.

Installing the VTN Coordinator

• Enter into the externalapps directory in the top directory of Helium.

 cd distribution-karaf-0.2.1-Helium-SR1/externalapps

• Untar the package distribution.vtn-coordinator-6.0.0.1-Helium-SR1-bin.tar.bz2 to extract
VTN Coordinator from the tar.bz2 file in the "externalapps" directory.

This will install VTN Coordinator to "/usr/local/vtn" directory. The name of the tar.bz2 file
name varies depending on the version. Please give the same tar.bz2 file name which is
there in your directory.

Note

VTN Coordinator runs on port 8083 (TCP) for REST API by default. If you want
to run it on different port other than the default, change the port number in
the below file:

/usr/local/vtn/tomcat/conf/tomcat-env.sh

Configuring database for VTN Coordinator

• Execute the below command.

 /usr/local/vtn/sbin/db_setup

How to set up OpenStack for the integration with
VTN Manager

This guide describes how to set up OpenStack for integration with OpenDaylight
Controller.

While OpenDaylight Controller provides several ways to integrate with OpenStack, this
guide focus on the way which uses VTN features available on OpenDaylight controller.In
the integration, VTN Manager work as network service provider for OpenStack.

VTN Manager features, enable OpenStack to work in pure OpenFlow environment in which
all switches in data plane are OpenFlow switch.

Requirements
To use OpenDaylight Controller (ODL) as Network Service Provider for Openstack.

Components
• OpenDaylight Controller.

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:Troubleshooting#Problems_while_Installing_PostgreSQL_due_to_openssl

OpenDaylight User Guide

73

• OpenStack Control Node.

• OpenStack Compute Node.

• OpenFlow Switch like mininet(Not Mandatory).

The VTN features support multiple OpenStack nodes. You can deploy multiple OpenStack
Compute Nodes. In management plane, OpenDaylight Controller, OpenStack nodes and
OpenFlow switches should communicate with each other. In data plane, Open vSwitches
running in OpenStack nodes should communicate with each other through a physical or
logical OpenFlow switches. The core OpenFlow switches are not mandatory. Therefore, you
can directly connect to the Open vSwitch’s.

Figure 13.6. LAB Setup

Note

Ubuntu 14.04 was used in both the nodes and Vsphere was used for this
howto.

Configuration
Server Preparation

• Install Ubuntu 14.04 LTS in two servers (OpenStack Control node and Compute node
respectively)

OpenDaylight User Guide

74

• While installing, Ubuntu mandates creation of a User, we created the user "stack"(We
will use the same user for running devstack) NOTE: You can also have multiple Compute
nodes. TIP: Please do minimal Install to avoid any issues in devstack bringup

User Settings - Login to both servers - Disable Ubuntu Firewall

 sudo ufw disable

• Optionally install these packages

 sudo apt-get install net-tools

• Edit sudo vim /etc/sudoers and add an entry as follows

 stack ALL=(ALL) NOPASSWD: ALL

Network Settings - Checked the output of ifconfig -a, two interfaces were listed eth0 and
eth1 as indicated in the image above. - We had connected eth0 interface to the Network
where ODL Controller is reachable. - eth1 interface in both servers were connected to
a different network to act as data plane for the VM’s created using the OpenStack. -
Manually edited the file : sudo vim /etc/network/interfaces and made entries as follows

 stack@ubuntu-devstack:~/devstack$ cat /etc/network/interfaces
 # This file describes the network interfaces available on your system
 # and how to activate them. For more information, see interfaces(5).
 # The loop-back network interface
 auto lo
 iface lo inet loopback
 # The primary network interface
 auto eth0
 iface eth0 inet static
 address <IP_ADDRESS_TO_REACH_ODL>
 netmask <NET_MASK>
 broadcast <BROADCAST_IP_ADDRESS>
 gateway <GATEWAY_IP_ADDRESS>
 auto eth1
 iface eth1 inet static
 address <IP_ADDRESS_UNIQ>
 netmask <NETMASK>

Note

Please ensure that the eth0 interface is the default route and it is able to reach
the ODL_IP_ADDRESS NOTE: The entries for eth1 are not mandatory, If not
set, we may have to manually do "ifup eth1" after the stacking is complete to
activate the interface

Finalize - reboot both nodes after the user and network settings to have the network
settings applied to the network - Login again and check the output of ifconfig to ensure
that both interfaces are listed

ODL Settings and Execution

vtn.ini

• VTN uses the configuration parameters from vtn.ini file for the OpenStack integration.

OpenDaylight User Guide

75

• These values will be set for the OpenvSwitch, in all the participating OpenStack nodes.

• A configuration file vtn.ini'' needs to be created manually in the 'configuration directory.

• The contents of vtn.ini should be as follows:

bridgename=br-int
portname=eth1
protocols=OpenFlow13
failmode=secure

• The values of the configuration parameters must be changed based on the user
environment.

• Especially, "portname" should be carefully configured, because if the value is wrong,
OpenDaylight controller fails to forward packets.

• Other parameters works fine as is for general use cases. bridgename

• The name of the bridge in Open vSwitch, that will be created by OpenDaylight
Controller.

• It must be "br-int". portname

• The name of the port that will be created in the vbridge in Open vSwitch.

• This must be the same name of the interface of OpenStack Nodes which is used for
interconnecting OpenStack Nodes in data plane.(in our case:eth1)

• By default, if vtn.ini is not created, VTN uses ens33 as portname. protocols

• OpenFlow protocol through which OpenFlow Switch and Controller communicate.

• The values can be OpenFlow13 or OpenFlow10. failmode

• The value can be "standalone" or "secure".

• Please use "secure" for general use cases.

Start ODL Controller

• Please refer to the https://wiki.opendaylight.org/view/Release/Helium/VTN/
Installation_Guide to run ODL with VTN Feature enabled.

Tip

After running ODL Controller, please ensure ODL Controller listens to the
ports:6633,6653, 6640 and 8080

Tip

Please allow the ports in firewall for the devstack to be able to communicate
with ODL Controller.

https://wiki.opendaylight.org/view/Release/Helium/VTN/Installation_Guide
https://wiki.opendaylight.org/view/Release/Helium/VTN/Installation_Guide

OpenDaylight User Guide

76

Note

6633/6653 - OpenFlow Ports

Note

6640 - OVS Manager Port

Note

8080 - Port for REST API

Devstack Setup

Get Devstack (All nodes)

Install git application using

sudo apt-get install git
get devstack
git clone https://git.openstack.org/openstack-dev/devstack;

Switch to stable/Juno Version branch

cd devstack
git checkout stable/juno

Stack Control Node

local.conf:

 cd devstack in the controller node
* Copy the contents of local.conf (devstack control node) and save it as
 "local.conf" in the devstack.
* Please modify the IP Address values as required.
* Stack the node

 ./stack.sh

Verify Control Node stacking

• stack.sh prints out Horizon is now available at http://
<CONTROL_NODE_IP_ADDRESS>:8080/

• Execute the command sudo ovs-vsctl show in the control node terminal and verify if the
bridge br-int is created.

Stack Compute Node

• local.conf:

• cd devstack in the controller node

http://<CONTROL_NODE_IP_ADDRESS>:8080/
http://<CONTROL_NODE_IP_ADDRESS>:8080/

OpenDaylight User Guide

77

• Copy the contents of local.conf (devstack compute node) and save it as local.conf in the
devstack''.

• Please modify the IP Address values as required.

• Stack the node

 ./stack.sh

Verify Compute Node stacking

• stack.sh prints out This is your host ip: <COMPUTE_NODE_IP_ADDRESS>

• Execute the command sudo ovs-vsctl show in the control node terminal and verify if the
bridge br-int is created.

• The output of the ovs-vsctl show will be similar to the one seen in control node. =====
Additional Verifications

• Please visit the ODL DLUX GUI after stacking all the nodes, http://
<ODL_IP_ADDRESS>:8181/dlux/index.html. The switches, topology and the ports that
are currently read can be validated.

Tip

If the interconnected between the OVS is not seen, Please bring up the
interface for the dataplane manually using the below comamnd

 ifup <interface_name>

Tip

Some versions of OVS, drop packets when there is a table-miss, So please add
the below flow to all the nodes with OVS version (>=2.1)

 ovs-ofctl --protocols=OpenFlow13 add-flow br-int priority=0,actions=
output:CONTROLLER

Tip

Please Accept Promiscuous mode in the networks involving the interconnect.

Create VM from Devstack Horizon GUI

• Login to http://<CONTROL_NODE_IP>:8080/ to check the horizon GUI.

http://<ODL_IP_ADDRESS>:8181/dlux/index.html
http://<ODL_IP_ADDRESS>:8181/dlux/index.html
http://<CONTROL_NODE_IP>:8080/

OpenDaylight User Guide

78

Figure 13.7. Horizon GUI

 Enter the value for User Name as admin and enter the value for Password as
 labstack.
* We should first ensure both the hypervisors(control node and compute node)
 are mapped under hypervisors by clicking on Hpervisors tab.

OpenDaylight User Guide

79

Figure 13.8. Hypervisors

• Create a new Network from Horizon GUI.

• Click on Networks Tab.

• click on the Create Network button.

OpenDaylight User Guide

80

Figure 13.9. Create Network

• A popup screen will appear.

• Enter network name and click Next button.

OpenDaylight User Guide

81

Figure 13.10. Step 1

• Create a sub network by giving Network Address and click Next button .

OpenDaylight User Guide

82

Figure 13.11. Step 2

• Specify the additional details for subnetwork (please refer the image for your reference).

OpenDaylight User Guide

83

Figure 13.12. Step 3

• Click Create button

• Create VM Instance

• Navigate to Instances tab in the GUI.

OpenDaylight User Guide

84

Figure 13.13. Instance Creation

• Click on Lauch Instances button.

OpenDaylight User Guide

85

Figure 13.14. Launch Instance

• Click on Details tab to enter the VM details.For this demo we are creating Ten
VM’s(insances).

• In the Networking tab, we must select the network,for this we need to drag and drop
the Available networks to Selected Networks (i.e) Drag vtn1 we created from Available
networks to Selected Networks and click Launch to create the instances.

OpenDaylight User Guide

86

Figure 13.15. Launch Network

• Ten VM’s will be created.

OpenDaylight User Guide

87

Figure 13.16. Load All Instances

• Click on any VM displayed in the Instances tab and click the Console tab.

OpenDaylight User Guide

88

Figure 13.17. Instance Console

• Login to the VM console and verify with a ping commad.

OpenDaylight User Guide

89

Figure 13.18. Ping

Verification of Control and Compute Node after VM creation

The output of sudo ovs-vsctl command after VM creation

 [stack@icehouse-compute-odl devstack]$ sudo ovs-vsctl show Manager
 "tcp:192.168.64.73:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:192.168.64.73:6633"
 is_connected: true
 fail_mode: secure
 Port "tapa2e1ef67-79"
 Interface "tapa2e1ef67-79"
 Port "tap5f34d39d-5e"
 Interface "tap5f34d39d-5e"
 Port "tapc2858395-f9"
 Interface "tapc2858395-f9"
 Port "tapa9ea900a-4b"
 Interface "tapa9ea900a-4b"
 Port "tapc63ef3de-53"

OpenDaylight User Guide

90

 Interface "tapc63ef3de-53"
 Port "tap01d51478-8b"
 Interface "tap01d51478-8b"
 Port "tapa0b085ab-ce"
 Interface "tapa0b085ab-ce"
 Port "tapeab380de-8f"
 Interface "tapeab380de-8f"
 Port "tape404538c-0a"
 Interface "tape404538c-0a"
 Port "tap2940658d-15"
 Interface "tap2940658d-15"
 Port "ens224"
 Interface "ens224"
 ovs_version: "2.3.0"
 <code>[stack@icehouse-controller-odl devstack]$ sudo ovs-vsctl show
 Manager "tcp:192.168.64.73:6640"
 is_connected: true
 Bridge br-int
 Controller "tcp:192.168.64.73:6633"
 is_connected: true
 fail_mode: secure
 Port "tap71790d18-65"
 Interface "tap71790d18-65"
 Port "ens224"
 Interface "ens224"
 ovs_version: "2.3.0"
NOTE:In the above scenario more nodes have been created in the compute node

VTN Devstack Script

• The local.conf is a user-maintained settings file. This allows all custom settings for
DevStack to be contained in a single file. This file is processed strictly in sequence. The
following datas are needed to be set in the local.conf file:

• Set the Host_IP as the detection is unreliable.

• Set FLOATING_RANGE to a range not used on the local network, i.e. 192.168.1.224/27.
This configures IP addresses ending in 225-254 to be used as floating IPs.

• Set FLAT_INTERFACE to the Ethernet interface that connects the host to your local
network. This is the interface that should be configured with the static IP address
mentioned above.

• If the *_PASSWORD variables are not set, we will be prompted to enter values during the
execution of stack.sh.

• Set ADMIN_PASSWORD . This password is used for the admin and demo accounts set up
as OpenStack users. We can login to the OpenStack GUI with this credentials only.

• Set the MYSQL_PASSWORD. The default here is a random hex string which is
inconvenient if you need to look at the database directly for anything.

• Set the RABBIT_PASSWORD. This is used by messaging services used by both the nodes.

• Set the service password. This is used by the OpenStack services (Nova, Glance, etc) to
authenticate with Keystone.

OpenDaylight User Guide

91

local.conf (devstack control node)

local.conf(control)

#IP Details
HOST_IP=<CONTROL_NODE_MANAGEMENT_IF_IP_ADDRESS>#Please Add The Control Node IP
 Address in this line
FLAT_INTERFACE=<FLAT_INTERFACE_NAME>
SERVICE_HOST=$HOST_IP
#Instance Details
MULTI_HOST=1
#config Details
RECLONE=yes #Make it "no" after stacking successfully the first time
VERBOSE=True
LOG_COLOR=True
LOGFILE=/opt/stack/logs/stack.sh.log
SCREEN_LOGDIR=/opt/stack/logs
#OFFLINE=True #Uncomment this after stacking successfully the first time
#Passwords
ADMIN_PASSWORD=labstack
MYSQL_PASSWORD=supersecret
RABBIT_PASSWORD=supersecret
SERVICE_PASSWORD=supersecret
SERVICE_TOKEN=supersecrettoken
ENABLE_TENANT_TUNNELS=false
#Services
disable_service rabbit
enable_service qpid
enable_service quantum
enable_service n-cpu
enable_service n-cond
disable_service n-net
enable_service q-svc
enable_service q-dhcp
enable_service q-meta
enable_service horizon
enable_service quantum
enable_service tempest
ENABLED_SERVICES+=,n-api,n-crt,n-obj,n-cpu,n-cond,n-sch,n-novnc,n-cauth,n-
cauth,nova
ENABLED_SERVICES+=,cinder,c-api,c-vol,c-sch,c-bak
#ML2 Details
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=opendaylight
Q_ML2_TENANT_NETWORK_TYPE=local
Q_ML2_PLUGIN_TYPE_DRIVERS=local
disable_service n-net
enable_service q-svc
enable_service q-dhcp
enable_service q-meta
enable_service neutron
enable_service odl-compute
ODL_MGR_IP=<ODL_IP_ADDRESS> #Please Add the ODL IP Address in this line
OVS_PHYSICAL_BRIDGE=br-int
Q_OVS_USE_VETH=True
url=http://<ODL_IP_ADDRESS>:8080/controller/nb/v2/neutron #Please Add the ODL
 IP Address in this line
username=admin
password=admin

OpenDaylight User Guide

92

local.conf (devstack compute node)

local.conf(compute)

#IP Details
HOST_IP=<COMPUTE_NODE_MANAGEMENT_IP_ADDRESS> #Add the Compute node Management
 IP Address
SERVICE_HOST=<CONTROLLEr_NODE_MANAGEMENT_IP_ADDRESS> #Add the cotnrol Node
 Management IP Address here
#Instance Details
MULTI_HOST=1
#config Details
RECLONE=yes #Make thgis "no" after stacking successfully once
#OFFLINE=True #Uncomment this line after stacking successfuly first time.
VERBOSE=True
LOG_COLOR=True
LOGFILE=/opt/stack/logs/stack.sh.log
SCREEN_LOGDIR=/opt/stack/logs
#Passwords
ADMIN_PASSWORD=labstack
MYSQL_PASSWORD=supersecret
RABBIT_PASSWORD=supersecret
SERVICE_PASSWORD=supersecret
SERVICE_TOKEN=supersecrettoken
#Services
ENABLED_SERVICES=n-cpu,rabbit,neutron
#ML2 Details
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=opendaylight
Q_ML2_TENANT_NETWORK_TYPE=local
Q_ML2_PLUGIN_TYPE_DRIVERS=local
enable_service odl-compute
ODL_MGR_IP=<ODL_IP_ADDRESS> #ADD ODL IP address here
OVS_PHYSICAL_BRIDGE=br-int
ENABLE_TENANT_TUNNELS=false
Q_OVS_USE_VETH=True
#Details of the Control node for various services
[[post-config|/etc/neutron/plugins/ml2/ml2_conf.ini]]
Q_HOST=$SERVICE_HOST
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292
KEYSTONE_AUTH_HOST=$SERVICE_HOST
KEYSTONE_SERVICE_HOST=$SERVICE_HOST
NOVA_VNC_ENABLED=True
NOVNCPROXY_URL="http://<CONTROLLER_NODE_IP_ADDRESS>:6080/vnc_auto.html" #Add
 Controller Node IP address
VNCSERVER_LISTEN=$HOST_IP
VNCSERVER_PROXYCLIENT_ADDRESS=$VNCSERVER_LISTEN

Note

We have to comment OFFLINE=TRUE in local.conf files, this will make all the
installations to happen automatically. RECLONE=yes only when we set up the
DevStack environment from scratch.

References

• http://devstack.org/guides/multinode-lab.html

http://devstack.org/guides/multinode-lab.html

OpenDaylight User Guide

93

• https://wiki.opendaylight.org/view/File:Vtn_demo_hackfest_2014_march.pdf

VTN Usage Examples

How to configure L2 Network with Single Controller

Overview

This example provides the procedure to demonstrate configuration of VTN Coordinator
with L2 network using VTN Virtualization(single controller). Here is the Example
for vBridge Interface Mapping with Single Controller using mininet. mininet details
and set-up can be referred at below URL: https://wiki.opendaylight.org/view/
OpenDaylight_Controller:Installation→Using_Mininet

Figure 13.19. EXAMPLE DEMONSTRATING SINGLE CONTROLLER

Requirements

• Configure mininet and create a topology:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo
 tree,2

• mininet> net

 s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
 s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
 h1 h1-eth0:s1-eth1
 h2 h2-eth0:s2-eth2

Configuration

• Create a Controller

curl --user admin:adminpass -H 'content-type: application/json' -X POST -
d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2",

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Installation#Using_Mininet

OpenDaylight User Guide

94

 "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.
1:8083/vtn-webapi/controllers.json

• Create a VTN

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.
1:8083/vtn-webapi/vtns.json

• Create a vBridge in the VTN

 curl --user admin:adminpass -H 'content-type: application/json' -X POST
 -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/
vbridges.json

• Create two Interfaces into the vBridge

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

• Get the list of logical ports configured

Curl --user admin:adminpass -H 'content-type: application/json' -X GET http:/
/127.0.0.1:8083/vtn-webapi/controllers/controllerone/domains/\(DEFAULT\)/
logical_ports.json

• Configure two mappings on the interfaces

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/
portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/
portmap.json

Verification

Please verify whether the Host1 and Host3 are pinging. * Send packets from Host1 to Host3

|mininet> h1 ping h3

How to configure L2 Network with Multiple Controllers

• This example provides the procedure to demonstrate configuration of VTN Coordinator
with L2 network using VTN Virtualization Here is the Example for vBridge Interface
Mapping with Multi-controller using mininet.

OpenDaylight User Guide

95

Figure 13.20. EXAMPLE DEMONSTRATING MULTIPLE CONTROLLERS

Requirements

• Configure multiple controllers using the mininet script given below: https://
wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN
%29:Scripts:Mininet→Network_with_Multiple_Paths_for_delivering_packets

Configuration

• Create a VTN

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"vtn" : {"vtn_name":"vtn3"}}' http://127.0.0.1:8083/vtn-webapi/vtns.json

• Create two Controllers

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"controller": {"controller_id": "odc1", "ipaddr":"10.100.9.52", "type":
 "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-
webapi/controllers.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"controller": {"controller_id": "odc2", "ipaddr":"10.100.9.61", "type":
 "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-
webapi/controllers.json

• Create two vBridges in the VTN like, vBridge1 in Controller1 and vBridge2 in Controller2

 curl --user admin:adminpass -H 'content-type: application/json' -
X POST -d '{"vbridge" : {"vbr_name":"vbr1","controller_id":"odc1",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
vbridges.json

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_Multiple_Paths_for_delivering_packets
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_Multiple_Paths_for_delivering_packets
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Scripts:Mininet#Network_with_Multiple_Paths_for_delivering_packets

OpenDaylight User Guide

96

curl --user admin:adminpass -H 'content-type: application/json' -
X POST -d '{"vbridge" : {"vbr_name":"vbr2","controller_id":"odc2",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/
vbridges.json

• Create vBridge Interfaces

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/
vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/
vtn3/vbridges/vbr1/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1"}}' http://127.0.0.1:8083/vtn-webapi/vtns/
vtn3/vbridges/vbr2/interfaces.json

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if2"}}' http://127.0.0.1:8083/vtn-webapi/vtns/
vtn3/vbridges/vbr2/interfaces.json

• Get the list of logical ports configured

curl --user admin:adminpass -H 'content-type: application/json' -X GET http:/
/127.0.0.1:8083/vtn-webapi/controllers/odc1/domains/\(DEFAULT\)/logical_ports/
detail.json

• Create boundary and vLink

curl --user admin:adminpass -H 'content-type: application/json' -X
 POST -d '{"boundary": {"boundary_id": "b1", "link": {"controller1_id":
 "odc1", "domain1_id": "(DEFAULT)", "logical_port1_id": "PP-
OF:00:00:00:00:00:00:00:01-s1-eth3", "controller2_id": "odc2", "domain2_id":
 "(DEFAULT)", "logical_port2_id": "PP-OF:00:00:00:00:00:00:00:04-s4-eth3"}}}'
 http://127.0.0.1:8083/vtn-webapi/boundaries.json

curl --user admin:adminpass -H 'content-type: application/json' -X
 POST -d '{"vlink": {"vlk_name": "vlink1" , "vnode1_name": "vbr1",
 "if1_name":"if2", "vnode2_name": "vbr2", "if2_name": "if2", "boundary_map":
 {"boundary_id":"b1","vlan_id": "50"}}}' http://127.0.0.1:8083/vtn-webapi/
vtns/vtn3/vlinks.json

• Configure port-map on the interfaces

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr1/interfaces/if1/
portmap.json

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:05-s5-eth2"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn3/vbridges/vbr2/interfaces/if1/
portmap.json

Verification

Please verify whether Host h2 and Host h6 are pinging. * Send packets from h2 to h6

mininet> h2 ping h6

OpenDaylight User Guide

97

How To Test Vlan-Map In Mininet Environment

Overview

This example explains how to test vlan-map in a multi host scenario.

Figure 13.21. Example that demonstrates vlanmap testing in Mininet
Environment

Requirements

• Save the mininet script given below as vlan_vtn_test.py and run the mininet script in the
mininet environment where Mininet is installed.

Mininet Script

https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet→Network_with_hosts_in_different_vlan

• Run the mininet script

sudo mn --controller=remote,ip=192.168.64.13 --custom vlan_vtn_test.py --topo
 mytopo

Configuration

Please follow the below steps to test a vlan map using mininet: * Create a controller

curl --user admin:adminpass -H 'content-type: application/json' -X POST -
d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.0.0.2",
 "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.
1:8083/vtn-webapi/controllers

• Create a VTN

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Scripts:Mininet#Network_with_hosts_in_different_vlan

OpenDaylight User Guide

98

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: adminpass' -d '{"vtn" : {"vtn_name":"vtn1","description":"test
 VTN" }}' http://127.0.0.1:8083/vtn-webapi/vtns.json

• Create a vBridge(vBridge1)

curl -X POST -H 'content-type: application/json' -H 'username: admin'
 -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge1",
"controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create a vlan map with vlanid 200 for vBridge vBridge1

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 200 }}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/vlanmaps.json

• Create a vBridge (vBridge2)

curl -X POST -H 'content-type: application/json' -H 'username: admin'
 -H 'password: adminpass' -d '{"vbridge" : {"vbr_name":"vBridge2",
"controller_id":"controllerone","domain_id":"(DEFAULT)" }}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges.json

• Create a vlan map with vlanid 300 for vBridge vBridge2

curl -X POST -H 'content-type: application/json' -H 'username: admin' -H
 'password: adminpass' -d '{"vlanmap" : {"vlan_id": 300 }}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge2/vlanmaps.json

Verification

Ping all in mininet environment to view the host reachability.

mininet> pingall
Ping: testing ping reachability
h1 -> X h3 X h5 X
h2 -> X X h4 X h6
h3 -> h1 X X h5 X
h4 -> X h2 X X h6
h5 -> h1 X h3 X X
h6 -> X h2 X h4 X

How To View Specific VTN Station Information.

This example demonstrates on how to view a specific VTN Station information.

OpenDaylight User Guide

99

Figure 13.22. EXAMPLE DEMONSTRATING VTN STATIONS

Requirement

• Configure mininet and create a topology:

 $ sudo mn --custom /home/mininet/mininet/custom/topo-2sw-2host.py --
controller=remote,ip=10.100.9.61 --topo mytopo
mininet> net

 s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1
 s2 lo: s2-eth1:s1-eth2 s2-eth2:h2-eth0
 h1 h1-eth0:s1-eth1
 h2 h2-eth0:s2-eth2

*Generate traffic by pinging between hosts h1 and h2 after configuring the portmaps
respectively

 mininet> h1 ping h2
 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
 64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=16.7 ms
 64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=13.2 ms

Configuration

Create Controller.

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -
d '{"controller": {"controller_id": "controllerone", "ipaddr":"10.100.9.61",
 "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.
1:8083/vtn-webapi/controllers.json

Create a VTN.

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -
d '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.
1:8083/vtn-webapi/vtns.json

OpenDaylight User Guide

100

Create a vBridge in the VTN.

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST
 -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"controllerone",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/
vbridges.json

Create two Interfaces into the vBridge.

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

Configure two mappings on the interfaces.

curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/
portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth2"}}'
 http://17.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/
portmap.json

Get the VTN stations information.

curl -v -X GET -H 'content-type: application/json' -H 'username: admin'
 -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?
controller_id=controllerone&vtn_name=vtn1"

Verification

curl -v -X GET -H 'content-type: application/json' -H 'username: admin'
 -H 'password: adminpass' "http://127.0.0.1:8083/vtn-webapi/vtnstations?
controller_id=controllerone&vtn_name=vtn1"
{
 "vtnstations": [
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [
 "10.0.0.2"
],
 "macaddr": "b2c3.06b8.2dac",
 "no_vlan_id": "true",
 "port_name": "s2-eth2",
 "station_id": "178195618445172",
 "switch_id": "00:00:00:00:00:00:00:02",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 },
 {
 "domain_id": "(DEFAULT)",
 "interface": {},
 "ipaddrs": [

OpenDaylight User Guide

101

 "10.0.0.1"
],
 "macaddr": "ce82.1b08.90cf",
 "no_vlan_id": "true",
 "port_name": "s1-eth1",
 "station_id": "206130278144207",
 "switch_id": "00:00:00:00:00:00:00:01",
 "vnode_name": "vBridge1",
 "vnode_type": "vbridge",
 "vtn_name": "vtn1"
 }
]
}

How To View Dataflows in VTN

This example demonstrates on how to view a specific VTN Dataflow information.

Configuration

The same Configuration as Vlan Mapping Example(https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_test_vlan-
map_in_Mininet_environment)

Verification

Get the VTN Dataflows information

curl -v -X GET -H 'content-type: application/json' --user 'admin:adminpass'
 "http://127.0.0.1:8083/vtn-webapi/dataflows?controller_id=controllerone&
srcmacaddr=924c.e4a3.a743&vlan_id=300&switch_id=00:00:00:00:00:00:00:02&
port_name=s2-eth1"

{
 "dataflows": [
 {
 "controller_dataflows": [
 {
 "controller_id": "controllerone",
 "controller_type": "odc",
 "egress_domain_id": "(DEFAULT)",
 "egress_port_name": "s3-eth3",
 "egress_station_id": "3",
 "egress_switch_id": "00:00:00:00:00:00:00:03",
 "flow_id": "29",
 "ingress_domain_id": "(DEFAULT)",
 "ingress_port_name": "s2-eth2",
 "ingress_station_id": "2",
 "ingress_switch_id": "00:00:00:00:00:00:00:02",
 "match": {
 "macdstaddr": [
 "4298.0959.0e0b"
],
 "macsrcaddr": [
 "924c.e4a3.a743"
],
 "vlan_id": [

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_test_vlan-map_in_Mininet_environment
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_test_vlan-map_in_Mininet_environment
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):VTN_Coordinator:RestApi:How_to_test_vlan-map_in_Mininet_environment

OpenDaylight User Guide

102

 "300"
]
 },
 "pathinfos": [
 {
 "in_port_name": "s2-eth2",
 "out_port_name": "s2-eth1",
 "switch_id": "00:00:00:00:00:00:00:02"
 },
 {
 "in_port_name": "s1-eth2",
 "out_port_name": "s1-eth3",
 "switch_id": "00:00:00:00:00:00:00:01"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "00:00:00:00:00:00:00:03"
 }
]
 }
],
 "reason": "success"
 }
]
}

How To Configure Flow Filters Using VTN

Overview

The flow-filter function discards, permits, or redirects packets of the traffic within a VTN,
according to specified flow conditions The table below lists the actions to be applied when
a packet matches the condition:

Action Function

Pass Permits the packet to pass. As options, packet transfer
priority (set priority) and DSCP change (se t ip-dscp) is
specified.

Drop Discards the packet.

Redirect Redirects the packet to a desired virtual interface. As an
option, it is possible to change the MAC address when the
packet is transferred.

OpenDaylight User Guide

103

Figure 13.23. Flow Filter

Following steps explain flow-filter function:

• When a packet is transferred to an interface within a virtual network, the flow-filter
function evaluates whether the transferred packet matches the condition specified in the
flow-list.

• If the packet matches the condition, the flow-filter applies the flow-list matching action
specified in the flow-filter.

Requirements

To apply the packet filter, configure the following:

• Create a flow-list and flow-listentry.

• Specify where to apply the flow-filter, for example VTN, vBridge, or interface of vBridge.

Configure mininet and create a topology:

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo
 tree

Please generate the following topology

$ mininet@mininet-vm:~$ sudo mn --controller=remote,ip=<controller-ip> --topo
 tree,2
mininet> net
c0
s1 lo: s1-eth1:s2-eth3 s1-eth2:s3-eth3
s2 lo: s2-eth1:h1-eth0 s2-eth2:h2-eth0 s2-eth3:s1-eth1
s3 lo: s3-eth1:h3-eth0 s3-eth2:h4-eth0 s3-eth3:s1-eth2
h1 h1-eth0:s2-eth1
h2 h2-eth0:s2-eth2
h3 h3-eth0:s3-eth1
h4 h4-eth0:s3-eth2

OpenDaylight User Guide

104

Configuration

• .Create a controller

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST
 -d '{"controller": {"controller_id": "controller1", "ipaddr":"10.100.9.61",
 "type": "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.
1:8083/vtn-webapi/controllers

• Create a VTN

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"vtn" : {"vtn_name":"vtn_one","description":"test VTN" }}' http://127.0.0.
1:8083/vtn-webapi/vtns.json

• Create two vBridges

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST
 -d '{"vbridge" : {"vbr_name":"vbr_one^C"controller_id":"controller1",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/
vbridges.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"vbridge" :
{"vbr_name":"vbr_two","controller_id":"controller1",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/
vbridges.json

• Create vBridge interfaces

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces.json

• Configure two mappings on the interfaces

curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth1"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/
if1/portmap.json
curl -v --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:02-s2-eth1"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/
if2/portmap.json

• Create Flowlist

curl -v --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"flowlist": {"fl_name": "flowlist1", "ip_version":"IP"}}' http://127.0.0.
1:8083/vtn-webapi/flowlists.json

• Create Flowlistentry

curl -v --user admin:adminpass -H 'content-type: application/json' -X
 POST -d '{"flowlistentry": {"seqnum": "233","macethertype": "0x8000",
"ipdstaddr": "10.0.0.3","ipdstaddrprefix": "2","ipsrcaddr": "10.0.0.2",
"ipsrcaddrprefix": "2","ipproto": "17","ipdscp": "55","icmptypenum":"232",

OpenDaylight User Guide

105

"icmpcodenum": "232"}}' http://127.0.0.1:8083/vtn-webapi/flowlists/flowlist1/
flowlistentries.json

• Create vBridge Interface Flowfilter

curl -v --user admin:adminpass -X POST -H 'content-type: application/json' -d
 '{"flowfilter" : {"ff_type": "in"}}' http://127.0.0.1:8083/vtn-webapi/vtns/
vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters.json

Flow filter demonstration with DROP action-type

curl -v --user admin:adminpass -X POST -H 'content-type: application/
json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1",
 "action_type":"drop", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/
vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/
flowfilterentries.json

Verification

As we have applied the action type "drop" , ping should fail.

mininet> h1 ping h3
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable

In controller you can see the DROP action type information as below, here action as DROP.
osgi> readflows 0000000000000003

[FlowOnNode[flow =Flow[match = Match [fields={DL_VLAN=DL_VLAN(0), IN_PORT=
IN_PORT(OF|1@OF|00:00:00:00:00:00:00:03), DL_DST=DL_DST(4e:08:1d:a6:05:08),
 DL_SRC=DL_SRC(be:15:00:a4:96:13)}, matches=15], actions = [DROP],
 priority = 10, id = 0, idleTimeout = 0, hardTimeout = 300], tableId =
 0, sec = 18, nsec = 475000000, pkt = 20, byte = 1232], FlowOnNode[flow
 =Flow[match = Match [fields={DL_VLAN=DL_VLAN(0), IN_PORT=IN_PORT(OF|
3@OF|00:00:00:00:00:00:00:03), DL_DST=DL_DST(be:15:00:a4:96:13), DL_SRC=
DL_SRC(4e:08:1d:a6:05:08)}, matches=15], actions = [OUTPUT[OF|1@OF|
00:00:00:00:00:00:00:03]], priority = 10, id = 0, idleTimeout = 0, hardTimeout
 = 0], tableId = 0, sec = 18, nsec = 489000000, pkt = 10, byte = 812]]

Flow filter demonstration with PASS action-type

curl -v --user admin:adminpass -X PUT -H 'content-type: application/
json' -d '{"flowfilterentry": {"seqnum": "233", "fl_name": "flowlist1",
 "action_type":"pass", "priority":"3", "dscp":"55" }}' http://127.0.0.1:8083/
vtn-webapi/vtns/vtn_one/vbridges/vbr_two/interfaces/if1/flowfilters/in/
flowfilterentries/233.json

Verfication

mininet> h1 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=0.984 ms
64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.110 ms
64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.098 ms

In controller you can see the PASS action type information by executing the following
command:

OpenDaylight User Guide

106

 osgi> readflows 0000000000000003

How To Use VTN To Make Packets Take Different Paths

This example demonstrates on how to create a specific VTN Path Map information.

Figure 13.24. PathMap

Requirement

• Save the mininet script given below as pathmap_test.py and run the mininet script in the
mininet environment where Mininet is installed.

• Create topology using the below mininet script:

from mininet.topo import Topo
 class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost('h1')
 rightHost = self.addHost('h2')
 leftSwitch = self.addSwitch('s1')
 middleSwitch = self.addSwitch('s2')
 middleSwitch2 = self.addSwitch('s4')
 rightSwitch = self.addSwitch('s3')
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, middleSwitch)
 self.addLink(leftSwitch, middleSwitch2)
 self.addLink(middleSwitch, rightSwitch)

OpenDaylight User Guide

107

 self.addLink(middleSwitch2, rightSwitch)
 self.addLink(rightSwitch, rightHost)
 topos = { 'mytopo': (lambda: MyTopo()) }

 mininet> net
 c0
 s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth1 s1-eth3:s4-eth1
 s2 lo: s2-eth1:s1-eth2 s2-eth2:s3-eth1
 s3 lo: s3-eth1:s2-eth2 s3-eth2:s4-eth2 s3-eth3:h2-eth0
 s4 lo: s4-eth1:s1-eth3 s4-eth2:s3-eth2
 h1 h1-eth0:s1-eth1
 h2 h2-eth0:s3-eth3

• Generate traffic by pinging between hosts h1 and h2 before creating the portmaps
respectively

 mininet> h1 ping h2
 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
 From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
 From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
 From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
 From 10.0.0.1 icmp_seq=4 Destination Host Unreachable

Configuration

• Create Controller

curl --user admin:adminpass -H 'content-type: application/json' -X POST -
d '{"controller": {"controller_id": "odc", "ipaddr":"10.100.9.42", "type":
 "odc", "version": "1.0", "auditstatus":"enable"}}' http://127.0.0.1:8083/vtn-
webapi/controllers.json

• Create a VTN

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"vtn" : {"vtn_name":"vtn1","description":"test VTN" }}' http://127.0.0.
1:8083/vtn-webapi/vtns.json

• Create a vBridge in the VTN

curl --user admin:adminpass -H 'content-type: application/json' -X
 POST -d '{"vbridge" : {"vbr_name":"vBridge1","controller_id":"odc",
"domain_id":"(DEFAULT)" }}' http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/
vbridges.json

• Create two Interfaces into the vBridge

curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if1","description": "if_desc1"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json
curl --user admin:adminpass -H 'content-type: application/json' -X POST -d
 '{"interface": {"if_name": "if2","description": "if_desc2"}}' http://127.0.0.
1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces.json

• Configure two mappings on the interfaces

curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:01-s1-eth1"}}'

OpenDaylight User Guide

108

 http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if1/
portmap.json
curl --user admin:adminpass -H 'content-type: application/json' -X PUT -d
 '{"portmap":{"logical_port_id": "PP-OF:00:00:00:00:00:00:00:03-s3-eth3"}}'
 http://127.0.0.1:8083/vtn-webapi/vtns/vtn1/vbridges/vBridge1/interfaces/if2/
portmap.json

• Generate traffic by pinging between hosts h1 and h2 after creating the portmaps
respectively

 mininet> h1 ping h2
 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
 64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=36.4 ms
 64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.880 ms
 64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.073 ms
 64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.081 ms

• Get the VTN Dataflows information

curl -X GET -H 'content-type: application/json' --user 'admin:adminpass'
 "http://127.0.0.1:8083/vtn-webapi/dataflows?&switch_id=
00:00:00:00:00:00:00:01&port_name=s1-eth1&controller_id=odc&srcmacaddr=de3d.
7dec.e4d2&no_vlan_id=true"

• Create a Flowcondition in the VTN

curl --user admin:admin -H 'content-type: application/json' -X PUT
 -d '{"name": "flowcond_1","match": [{"index": 1,"ethernet": {"src":
 "ca:9e:58:0c:1e:f0","dst": "ba:bd:0f:e3:a8:c8","type": 2048},"inetMatch":
 {"inet4": {"src": "10.0.0.1","dst": "10.0.0.2","protocol": 1}}}]}' http://10.
100.9.42:8080/controller/nb/v2/vtn/default/flowconditions/flowcond_1

• Create a Pathmap in the VTN

curl --user admin:admin -H 'content-type: application/json' -X PUT -d
 '{"index": 10, "condition":"flowcond_1", "policy":1, "idleTimeout": 300,
 "hardTimeout": 0}' http://10.100.9.42:8080/controller/nb/v2/vtn/default/
pathmaps/1

• Get the Path policy information

curl --user admin:admin -H 'content-type: application/json' -X GET -d
 '{"id": 1,"default": 100000,"cost": [{"location": {"node": {"type":
 "OF","id": "00:00:00:00:00:00:00:01"},"port": {"type": "OF","id": "3",
"name": "s1-eth3"}},"cost": 1000},{"location": {"node": {"type": "OF",
"id": "00:00:00:00:00:00:00:04"},"port": {"type": "OF","id": "2","name":
 "s4-eth2"}},"cost": 1000},{"location": {"node": {"type": "OF", "id":
 "00:00:00:00:00:00:00:03"},"port": {"type": "OF","id": "3","name": "s3-
eth3"}},"cost": 100000}]}' http://10.100.9.42:8080/controller/nb/v2/vtn/
default/pathpolicies/1

Verification

• Before applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",

OpenDaylight User Guide

109

 "out_port_name": "s1-eth2",
 "switch_id": "00:00:00:00:00:00:00:01"
 },
 {
 "in_port_name": "s2-eth1",
 "out_port_name": "s2-eth2",
 "switch_id": "00:00:00:00:00:00:00:02"
 },
 {
 "in_port_name": "s3-eth1",
 "out_port_name": "s3-eth3",
 "switch_id": "00:00:00:00:00:00:00:03"
 }
]
}

• After applying Path policy information in the VTN

{
 "pathinfos": [
 {
 "in_port_name": "s1-eth1",
 "out_port_name": "s1-eth3",
 "switch_id": "00:00:00:00:00:00:00:01"
 },
 {
 "in_port_name": "s4-eth1",
 "out_port_name": "s4-eth2",
 "switch_id": "00:00:00:00:00:00:00:04"
 },
 {
 "in_port_name": "s3-eth2",
 "out_port_name": "s3-eth3",
 "switch_id": "00:00:00:00:00:00:00:03"
 }
]
}

VTN Coordinator(Troubleshooting HowTo)

Overview

This page demonstrates Installation troubleshooting steps of VTN coordinator.
OpenDaylight VTN provides multi-tenant virtual network functions on OpenDaylight
controllers. OpenDaylight VTN consists of two parts:

• VTN Coordinator

• VTN Manager.

VTN Coordinator orchestrates multiple VTN Managers running in OpenDaylight Controllers,
and provides VTN Applications with VTN API. VTN Manager is OSGi bundles running in
OpenDaylight Controller. Current VTN Manager supports only OpenFlow switches. It
handles PACKET_IN messages, sends PACKET_OUT messages, manages host information,
and installs flow entries into OpenFlow switches to provide VTN Coordinator with virtual
network functions. The requirements for installing these two are different.Therefore, we
recommend that you install VTN Manager and VTN Coordinator in different machines.

OpenDaylight User Guide

110

List of installation Troubleshooting How to’s

How to install VTN Coordinator?

• https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator

After executing db_setup, you have encountered the error "Failed to setup database"?

The error could be due to the below reasons * Access Restriction

The user who owns /usr/local/vtn/ directory and installs VTN coordinator, can only start
db_setup. Example :

 The directory should appear as below (assuming the user as "vtn"):
 # ls -l /usr/local/
 drwxr-xr-x. 12 vtn vtn 4096 Mar 14 21:53 vtn
 If the user doesnot own /usr/local/vtn/ then, please run the below command
 (assuming the username as vtn),
 chown -R vtn:vtn /usr/local/vtn

• Postgres not Present

1. In case of Fedora/CentOS/RHEL, please check if /usr/pgsql/<version>
 directory is present and also ensure the commands initdb, createdb,pg_ctl,
psql are working. If, not please re-install postgres packages
2. In case of Ubuntu, check if /usr/lib/postgres/<version> directory is
 present and check for the commands as in the previous step.

• Not enough space to create tables

Please check df -k and ensure enough free space is available.

• If the above steps do not solve the problem, please refer to the log file for the exact
problem

/usr/local/vtn/var/dbm/unc_setup_db.log for the exact error.

What are the things to check after vtn_start?

• list of coordinator processes

• Run the below command ensure the Coordinator daemons are running.

 Command: /usr/local/vtn/bin/unc_dmctl status
 Name Type IPC Channel PID
 ----------- ----------- -------------- ------
 drvodcd DRIVER drvodcd 15972
 lgcnwd LOGICAL lgcnwd 16010
 phynwd PHYSICAL phynwd 15996

• Issue the curl command to fetch version and ensure the process is able to respond.

How to debug a startup failure? The following activities take place in order during
startup * Database server is started after setting virtual memory to required value,Any
database startup errors will be reflected in any of the below logs.

https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_(VTN):Installation:VTN_Coordinator

OpenDaylight User Guide

111

 /usr/local/vtn/var/dbm/unc_db_script.log.
 /usr/local/vtn/var/db/pg_log/postgresql-*.log (the pattern will have
 the date)

• uncd daemon is kicked off, The daemon in turn kicks off the rest of the daemons.

 Any uncd startup failures will be reflected in /usr/local/vtn/var/uncd/
uncd_start.err.

After setting up the apache tomcat server, what are the aspects that should be
checked.

Please check if catalina is running.

 The command ps -ef | grep catalina | grep -v grep should list a catalina
 process

If you encounter an erroneous situation where the REST API is always failing.

 Please ensure the firewall settings for port:8080(Helium release) or
 port:8083(Post Helium release) and enable the same.

How to debug a REST API returning a failure message? Please check the /usr/share/
java/apache-tomcat-7.0.39/logs/core/core.log for failure details.

REST API for VTN configuration fails, how to debug? The default log level for all
daemons is "INFO", to debug the situation TRACE or DEBUG logs may be needed. To
increase the log level for individual daemons, please use the commands suggested below

 /usr/local/vtn/bin/lgcnw_control loglevel trace -- upll daemon log
 /usr/local/vtn/bin/phynw_control loglevel trace -- uppl daemon log
 /usr/local/vtn/bin/unc_control loglevel trace -- uncd daemon log
 /usr/local/vtn/bin/drvodc_control loglevel trace -- Driver daemon log

After setting the log levels, the operation can be repeated and the log files can be referred
for debugging.

Problems while Installing PostgreSQL due to openssl. Errors may occur when trying
to install postgreSQL rpms. Recently PostgreSQL has upgraded all their binaries to use
the latest openssl versions with fix for http://en.wikipedia.org/wiki/Heartbleed Please
upgrade the openssl package to the latest version and re-install. For RHEL 6.1/6.4 : If you
have subscription, Please use the same and update the rpms. The details are available in the
following link * https://access.redhat.com/site/solutions/781793 ACCESS-REDHAT

 rpm -Uvh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-1.0.
1e-15.el6.x86_64.rpm
 rpm -ivh http://mirrors.kernel.org/centos/6/os/x86_64/Packages/openssl-
devel-1.0.1e-15.el6.x86_64.rpm

For other linux platforms, Please do yum update, the public respositroes will have the latest
openssl, please install the same.

http://en.wikipedia.org/wiki/Heartbleed
https://access.redhat.com/site/solutions/781793

	OpenDaylight User Guide
	Table of Contents
	Part I. Getting Started with Opendaylight
	1. OpenDaylight Controller Overview
	2. Using the OpenDaylight User Interface (DLUX)
	Getting Started with DLUX
	Logging In
	Working with DLUX
	Viewing Network Statistics
	Viewing Network Topology
	Interacting with the Open Daylight Controller (ODL)
	Displaying Topology on the Yang UI
	Configuring List Elements on the Yang UI

	3. Running XSQL Console Commands and Queries
	XSQL Overview
	Installing XSQL
	XSQL Console Commands
	XSQL Queries
	Example: skip Criteria Operator

	4. Setting Up Clustering on an OpenDaylight Controller
	Clustering Overview
	Single Node Clustering
	Multiple Node Clustering
	Deployment Considerations
	Setting Up a Multiple Node Cluster
	Enabling HA on a Multiple Node Cluster

	Part II. Addons
	5. BGP LS PCEP
	BGP LS
	BGP speaker configuration

	PCEP
	Configure draft versions
	Configure PCEP segment routing

	6. Defense4All
	Defense4All Overview
	Defense4All User Interface
	Configuring the FrameWork Environment
	FrameWork Maintenance
	FrameWork Reports
	Configuring Defense4All Protected Objects (POs)
	Defense4All Reports

	7. Group-Based Policy
	Architecture and Model
	Tutorial
	Prepare the Environment
	Configuring the Test
	Running the Test
	Verifying
	ICMP
	HTTP

	Contact Information

	8. L2Switch
	Running the L2Switch project
	Check out the project using git
	Run the distribution

	Create a network using mininet
	Generating network traffic using mininet
	Checking Address Observations
	Checking Hosts
	Checking STP status of each link
	Miscellaneous mininet commands
	Components of the L2Switch
	Configuration of L2Switch Components

	9. ODL-SDNi
	10. Packet Cable MultiMedia (PCMM) Service
	Overview
	Architecture
	Features
	Install

	Support

	11. Plugin for OpenContrail
	12. TCP-MD5
	13. VTN
	VTN Overview
	Network Virtualization Function
	Virtual Network Construction
	Mapping of Physical Network Resources
	vBridge Functions
	vRouter Functions
	Flow Filter Functions
	Multiple SDN Controller Coordination
	Coordination between OpenFlow Network and L2/L3 Network
	Virtual Tenant Network (VTN) API
	Function Outline
	(Example) Connecting the terminal to virtual network

	VTN Installation Guide
	Supported Platforms
	Downloading Helium
	Setting up VTN Coordinator
	Installing the Java
	Installing prerequisites
	Installing PostgreSQL Database
	Installing the VTN Coordinator
	Configuring database for VTN Coordinator

	How to set up OpenStack for the integration with VTN Manager
	Requirements
	Components
	Configuration
	ODL Settings and Execution
	vtn.ini

	Start ODL Controller
	Devstack Setup
	Get Devstack (All nodes)
	Stack Control Node
	Verify Control Node stacking

	Stack Compute Node
	Verify Compute Node stacking

	Create VM from Devstack Horizon GUI
	Verification of Control and Compute Node after VM creation
	VTN Devstack Script
	local.conf (devstack control node)
	local.conf (devstack compute node)

	References

	VTN Usage Examples
	How to configure L2 Network with Single Controller
	Overview
	Requirements
	Configuration
	Verification

	How to configure L2 Network with Multiple Controllers
	Requirements
	Configuration
	Verification

	How To Test Vlan-Map In Mininet Environment
	Overview
	Requirements
	Mininet Script
	Configuration
	Verification

	How To View Specific VTN Station Information.
	Requirement
	Configuration
	Verification

	How To View Dataflows in VTN
	Configuration
	Verification

	How To Configure Flow Filters Using VTN
	Overview
	Requirements
	Configuration
	Flow filter demonstration with DROP action-type
	Verification
	Flow filter demonstration with PASS action-type
	Verfication

	How To Use VTN To Make Packets Take Different Paths
	Requirement
	Configuration
	Verification

	VTN Coordinator(Troubleshooting HowTo)
	Overview
	List of installation Troubleshooting How to’s
	After setting up the apache tomcat server, what are the aspects that should be checked.

